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Abstract— Epilepsy patients who do not respond to phar-
macological treatments currently have only brain surgery as
a major alternative therapy. Identifying which brain areas
to remove is thus of critical importance for physicians and
the patient. Currently, this process is almost entirely manual,
can vary greatly between clinical experts and centers, and
depends only on qualitative EEG features, all of which may
help explain the only modest success of extratemperal lobe
epilepsy surgery. In this study, we explore an unsupervised,
quantitative method for identifying seizure onset regions. A
Gaussian mixture model (GMM) was used to cluster 500 ms
epochs of intracranial electroencephalogram (EEG) prior to
(preictal) and during (ictal) seizures in week-long continuous
recordings from three patients during evalulation for epilepsy
surgery. The GMM learning paradigm determines the optimal
number of clusters for each patient. For the two patients whose
epochs sorted into two clusters, we found that one cluster was
predominantly composed of seizure epochs, and a subset of
the channels made brief “forays” into that cluser in the time
leading up to seizure onset. This observation is in keeping with
the clinical hypothesis that certain brain areas may be the
initiators of seizure activity, and we find that the channels
independently labeled by physicians as seizure onset zones
(SOZs) are statistically overrepesented in the seizure-defined
cluster. Nevertheless, we also find that a subset of channels not
labeled as SOZs has similar properties as those labeled SOZs.
In this study we have tried to avoid many of the assumptions
commonly made about what features and events are indicative
of epileptogenic activity and believe that such analysis can help
avoid many of the pitfalls of manual, non-objective human SOZ
marking.

I. INTRODUCTION

Those who suffer from frequent epileptic seizures have

two main treatment options: anti-epileptic drugs, and if those

are ineffective, surgery, where part of the brain thought to

be starting the seizures is removed. For those patients for

whom surgery is the only remaining treatment option, the

primary question for doctors is what areas of the brain to

remove. Thus, determining the seizure onset zone (SOZ) is

of critical importance. In current clinical practice, board-

certified epileptologists look at the intracranial electroen-

cephalogram (EEG) from implanted electrodes on the surface

of the cortex or penetrating into deeper brain structures

like the hippocampus or amygdala. The physicians manually

examine the EEG around the patient’s seizures and try to

identify specific electrodes (also known as channels) where
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the seizures or seizure-like activity seems to start under

the working hypothesis that removing them may reduce or

eliminate a patient’s seizures.

In current clinical practice, this process is almost entirely

manual, with physicians paging through raw EEG traces and

noting distinguishing and unusual characteristics like spikes

and higher-frequency activity in a subset of the channels. In

surgery, the physicians try to remove these channels in hopes

that it will reduce the number and severity of seizures in the

patients, and for some patients (approximately 35% in non-

lesional extratemporal epilepsy [1]) this sugery leaves them

seizure-free.

Why do the other half of patients still have seizures

after surgery? In addition to the diversity and complexity

of the disease and the crudeness of the surgical procedure,

the sheer mass of EEG data that the epileptologists must

wade through to make their seizure onset zone predictions

is a potential source of error. Furthermore, the lexicon of

qualitative EEG features used by epileptologists may be

insufficient to fully identify SOZs. While humans tend to

be very good at noticing patterns in data, they are usually

not as good at meticulously combing through large amounts

of it. Thankfully, automated algorithms tend to do well on

such tasks, and we believe they deserve a prominant role

in understanding how different channels (and thus areas of

brain) are involved in the dynamics leading up to a seizure.

In this paper, we present an unsupervised clustering algo-

rithm that models short (500 ms) epochs across channels

leading up to and during patients’s seizures. We use a

measure called the gap statistic [2] to assess how many

clusters are appropriate, including only one cluster. In two

of the three patients studied, we found that pre-seizure and

during-seizure epochs in individual channels separated into

two clusters. In these patients, we found that the cluster

prodiminantly defined by seizure epochs also contains a

larger-than-expected fraction of epochs in channels inde-

pendently labeled by epileptologists as within the seizure

onset zone. This work is an attempt to characterize the

behavior of channels involved in pre-seizure activity without

relying as much on potenially fallible human judgements or

assumptions.

II. METHODS

We used continuous intracranial EEG from three neocor-

tical epilepsy patients undergoing pre-surgical evaluation in

the epilepsy monitoring unit at the Mayo Clinic, Rochester,

MN. Data was sampled at 500 Hz and EEG clips from all

channels were extracted from five minutes before to one
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TABLE I

NUMBER OF EPOCHS ANALYZED FOR EACH PATIENT.

No. epochs

patient 1 966,336
patient 2 253,088
patient 3 431,400

minute after the start of each seizure for each patient, who

had seven, five, and four seizures, respectively. We used

a 500 ms sliding window (with 250 ms overlap) in each

channel of each seizure of each patient to extract short-term

“epochs.” Table 1 shows the number of epochs extracted

and analyzed for each patient across all channels. Under

the hypothesis that seizure onset channels can sometimes

demonstrate seizure-like activity preictally, we extracted five

features meant to separate seizure from non-seizure activity:

line length [3], and log-power in the delta (4-8 Hz), alpha

(8-13 Hz), beta (13-30 Hz), and gamma (30-100 Hz) EEG

frequency bands, with the assumption that seizures and

seizure-like activity tends to have higher frequency content

(in the beta and gamma bands) than “normal” activity.

For each patient individually, we normalized the epochs to

have zero mean and unit variance before applying Principal

Components Analysis (PCA), reducing the five features down

to two dimentions (referred to as “pc1” and “pc2”) while

retaining 89.8%, 90.5%, and 96.4% of the variance for the

three patients, respectively. Fig. 1 shows scatter plots of a

random sample of epochs in the two-dimensional PCA space

for each patient. Each epoch was given a corresponding label

of whether or not it came from a channel previously marked

by a human as a seizure onset zone (SOZ) channel.

We fit a Gaussian mixture model using the expectation

maximization (EM) algorithm [4]. In traditional mixture-

modeling, one must predefine the number of models in the

mixture, which can be a somewhat ad hoc procedure. We

used a measure call the gap statistic described by Tibshirani

et al. [2] to determine the optimal number of clusters,

including just a single cluster. The data was clustered with

the gap statistic in twenty independent trials for each patient

to confirm that the number of clusters found by the gap

statistic remained constant across the trials. Note, the seizure-

onset channel labels were not used in any way during

the unsupervised clustering, which only used the two PCA

dimensions in representing each event.

For those patients whose epochs sorted into more than

one cluster, we examined the population of epochs found in

the cluster (which we call the “second” cluster) dominated

by epochs during the seizure. Specifically, we compared the

observed fraction of epochs that came from SOZ-labeled

channels to their expected fraction using a 1000-trial permu-

tation test over the human SOZ labels. Finally, to examine

how similar each channel’s pre-seizure epochs were to the

aggregate in-seizure activity, we tabulated how many epochs

from each channel occurred in cluster two in the minutes

leading up to seizures.
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Fig. 1. Scatter plots of epochs drawn at random from patients 1 (top), 2
(middle), and 3 (bottom) shown in two-dimensional PCA-space.

III. RESULTS AND DISCUSSION

Interestingly, we found that the epochs leading up to and

during seizure did not separate into distinct clusters for all

of the patients. Two event clusters were found for two of the

three patients (patients 1 and 3), and one cluster for patient 2.

We see patient 2’s single cluster as evidence that our model

is not making undo assumptions about the data, however

reasonable they may seem. Furthermore, it is evidence that

the data can sometimes tell a different story than we humans

expect, which here is that epochs in seizure are always

statistically different from those just before a seizure. The

single cluster does not mean that the epochs in seizures

are indistinguishable from those before seizures, only that

they do not comprise their own statistically significant sub-

population.

In the two patients where two distinct sub-populations of
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Fig. 2. Event dynamics leading up to and during a seizure for patient
1 (left) and patient 3 (right). Outlines of the majority cluster (yellow) and
seizure-dominated (red) cluster delineating 90% of the probability mass of
each Gauassian. Part of the red, seizure-dominated Gaussian in patient 1 is
cut off by the plot on the right. Each dot represents a channel at a given
point in time, and its gray tail shows its path from the previous three time
points. The dots are colored by their posterior probability (0 to 1) of being
in the seizure-dominated cluster (red). The rows show different time points
leading up to and during the start of a seizure.

epochs were found, one of the clusters contained the large

majority (95% to 97%) of the probability mass of the mixture

model. The other cluster was defined predominantly by

epochs during the seizure, as one might expect. We noticed,

however, that leading up to the seizure, a handleful of

channels would occasionally make “forays” into the second

cluster. Fig. 2 shows this behavior for both patients. As the

seizure begins, a subset of channels “lead the way” into the

seizure-dominated cluster, where all of the channels end up

by the middle of the seizure.

These observations about the dynamics of pre-seizure

channel epochs are consistent with the clinical hypotheses

that certain channels can be the initiators of epileptic activity

that ultimately expands to include most or all of the other

channels. Our hypothesis that some of these leader channels

(heretofore with blinded labels) would be the same channels
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Fig. 3. The observed (red line) fraction of channels labels as SOZ in the
seizure-dominated cluster 2 compared to the chance expectation (blue line)
and its distribution (histogram) as determined by 1000 trials over the labels
from a permutation test.

labeled by a human as part of the SOZ was confirmed by the

permutation tests, shown in Fig 3. The observed fraction of

SOZ-labeled channels was significantly higher than chance

(p < 0.001), indicating than the SOZ-channels are over-

represented in cluster 2 for both patients. Given that the

majority of epochs in cluster 2 are still from channels not

labeled SOZs (85-87%) we do not claim that cluster 2 is the

“SOZ-cluster,” merely that it is predominantly defined by

in-seizure epochs (as seen in the bottom row of Fig. 2) and

that epochs from SOZ-labeled channels are overrepresented

in this cluster.

Our final analysis, seen in Fig. 4, shows the log-frequency

that each channel spent in the seizure-dominated cluster 2

in the time before (but not during) the seizures. We notice

that in both patients the human-labeled SOZ channels are

not unique in how much time they spent in cluster 2. In

the case of patient 3, the SOZ channels are not even the

ones that spent the most time in cluster 2. While these non-

SOZ-labeled channels in the aggregate are proportionally

underrepresented in cluster 2 (as seen in Fig. 3 by the fact

that the SOZ-labeled channels are overrepresented), some

individuals spend an amount of time on par with those

channels labeled as SOZs.
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Fig. 4. The log frequency of epochs occuring in the seizure-dominated cluster 2 for each channel of patients 1 and 3. Grey bars denote the channels
labeled as SOZs by a human marker, and white bars denote those not labeled as SOZs.

These analyses seem to indicate that a subset of channels

that physicians do not label as SOZs can behave very

similarly to those channels labeled as SOZs.

IV. CONCLUSIONS AND FUTURE WORK

In this paper, we have modeled the epochs leading up to

and during seizures using unsupervised methods (i.e., no a

priori human SOZ labelings were used in the model). We

have tried to involve as few assumptions as possible in this

model, for example assumptions about what types of epochs

are correlated with seizure onset zones, assumptions that

epochs in seizures are always statistically discinct from those

before seizures, and assumptions that the channels labeled

SOZs are the “gold standard” for what channels truly are

the precursors and instigators of epileptic activity.

We found the following results: 1) not all patients have

epochs in seizures that statistically distinct from pre-seizure

epochs, 2) in those patients with distinct clusters, a few

channels seem to make pre-seizure “forays” into the state-

space defined by seizure-activity, in keeping with clinical

hypotheses about epileptogenic brain areas, 3) these leading

channels are statistically overrepesented by those labeled by

humans as SOZs but 4) are not the only channels that spend

a large amount of time in the seizure-dominated cluster.

These analyses and observations are still very exploratory

and certainly merit future study. We plan to increase the num-

ber of patients as well as used channels subsequently resected

in surgery combined with patient outcomes to assess whether

the human-labeled SOZ channels and/or the channels that

spend more time in cluster 2 have any predictive power for

estimating patient outcome after resection. We believe that

only a quantitative, objective analysis of channel features

and epochs will have the discriminative power in predicting

patient outcome after surgery.
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