
  

  

Abstract—The goal of this study is to better understand  how 
the central nervous system switches between alternative 
stabilization strategies when presented with an unstable task. A 
haptic, bimanual manipulandum has been used to emulate an 
unstable task, which requires subjects to stabilize a virtual 
mass under the action of a saddle force field with two non-
linear springs, whose stiffness increases with the amount of 
stretch. Subjects learn to position the mass at various target 
points by adjusting the rest length, and thus the stiffness of the 
two springs.   From a previous study we know that subjects can 
stabilize the mass by either 1) applying large forces to stretch 
the springs and increase the mechanical stiffness of the system 
beyond a critical level or by 2) applying small force impulses 
that intermittently adjust the position of the mass. In this study 
we report the performance of a subject who was trained 
extensively to use one strategy or the other in order to 
characterize the mechanism of target switching, from the high-
stiffness to the low-stiffness regime and back. 

I. INTRODUCTION 
ANY common tasks in everyday life involve some 
kind of unstable dynamics, which can be compensated 

by means of two basic stabilization mechanisms: 1) a high-
stiffness strategy (SSS) where the elastic muscle properties 
are exploited by learning optimal co-activation patterns that 
achieve asymptotic stability; 2) a low-stiffness positional 
strategy (PSS) where bounded stability is achieved by 
intermittent, event-driven stabilization bursts [1]. The former 
strategy is high-bandwidth, because the implicit positional 
feedback coming from muscle stiffness is instantaneous, but 
high-effort, because it requires co-activation of agonist and 
antagonist muscles. In contrast, the latter strategy is low-
bandwidth, because it employs delay-affected explicit 
positional feedback, and low-effort, because it does not 
require muscles co-activation. The experiments reported by 
Burdet et al [2] can be explained in the SSS framework 
whereas the experiments by Loram et al [3] are consistent 
with the PSS model, thus suggesting that the brain is capable 
of employing both strategies. However, the experimental 
setups of the studies quoted above forced subjects to use one 
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strategy or the other, without an alternative choice. For this 
reason a new setup was implemented [4] which allows the 
subjects to choose one strategy or the other. The setup is 
based on a bimanual haptic interface that emulates a virtual 
underactuated bimanual manipulandum (VUBM), whose 
end-effector is under the action of an unstable saddle-like 
force field. VUBM includes two elastic elements with 
quadratic length-tension curves, thus allowing the subjects to 
modulate the stiffness ellipse of the manipulandum in 
amplitude, by stretching the two springs, and orientation, by 
changing the relative positions of the two hands with respect 
to the end-effector of the VUBM. In the preliminary 
experiments reported in [4] we found that subjects could 
learn rather quickly, in a single experimental session, to 
solve the stabilization tasks but did not choose the 
stabilization strategy in a uniform way. Rather, nearly half 
the population adopted the SSS model, in spite of the higher 
effort, and the remaining chose the more complex PSS 
mechanism. The unconscious choice was made in the early 
part of the training. In this paper we present the results of a 
study in which a single subject was trained for a long time 
(11 sessions) with the aim of becoming an “expert”.  As an 
expert, the subject was fully conscious of the existence of 
two stabilization strategies and capable to operating with 
both of them. The purpose of this study was to characterize 
the mechanism of target switching, from the high-stiffness to 
the low-stiffness regime and back.  

II. METHODS 

A. Experimental Apparatus 
The experiments use a virtual underactuated bimanual 

manipulandum (VUBM), which is simulated by means of a 
bimanual haptic interface  (BdF2, Celin srl, La Spezia, Italy, 
a direct evolution of the uni-manual robot manipulandum 
Braccio di Ferro[5]) (Fig. 1, top panel).  

VUBM consists of a virtual mass M of 15kg and a pair of 
non-linear springs attached, on one side, to the mass and, on 
the other, to the two hands, respectively. In addition to the 
two spring forces ( 21, FF ), M is also under the action of an 
unstable, saddle-like force field: 
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where (x,y) identifies the position of M and (x0,y0) the origin 
of the force field (Fig. 1, middle panel). 
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Fig. 1.  Top panel: experimental setup, which emulates a virtual 

underactuated bimanual manipulandum (VUBM) by means of a bimanual 
haptic interface. Middle panel: force-field acting on the virtual mass 
together with the two virtual spring forces. Bottom panel: length-tension 
curve of the two virtual springs. 

 
The bimanual robot system consists of two identical 

planar manipulanda, each with two degrees of freedom, 
mounted in a mirrored configuration on the same frame. The 
two robots are positioned horizontally with a distance 
between the axes of the motors of 38.5cm. The vertical 
position of the two robots is adjusted to avoid interference 
between the two hands. 

The virtual manipulandum is underactuated because the  
subject has no direct control on the position of the virtual 
mass, whose movements are characterized by  the following 
unstable dynamics: 
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where B is a viscous coefficient that damps oscillations of 
the load. 

Each spring has a linear and a quadratic component (Fig. 
1, bottom panel): F = KsL + ρsL2, where L stands for the 
length of one spring or the other (L1,L2). Therefore, the 
stiffness Z of each spring is not constant but depends on L:  
Z = Ks + 2ρsL. The overall stiffness of VUBM is a non-
linear function of Z1,Z2 and the positions of the two hands 
with respect to the virtual mass: 
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where MF  is the force applied to the virtual mass and  
],[ yxpM =  is the corresponding position in the field. In 

particular, we are interested with the stiffness element Kxx, 
which is the VUBM virtual stiffness in the direction of the 
unstable manifold,: 
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where Δy1 = y - y1 and Δy2 = y - y2. What is relevant, from 
the point of view of stability, is the ratio between Kxx and  
the instability coefficient Ku 

The following values of the system’s parameters were 
used: M = 15kg; B = 132N/m/s; Ku = 592N/m; Ks = Ku/4 = 
148N/m; ρs = 1480N/m2. With such parameter values and for 
small values of L, the total stiffness of the controller, even in 
the best condition, is only half the negative stiffness of the 
force field, along the unstable manifold. Moreover, these 
parameters ensure “well-behaved” dynamics along the stable 
manifold (natural frequency of 1Hz and damping factor of 
0.7) and a falling time constant along the unstable manifold 
of 306ms, compatible with an intermittent, low-stiffness 
PSS.  

B. Task & protocol 
The task is to stabilize M (1cm diameter) in one of 9 

circular areas (2cm diameter), uniformly distributed on the 
periphery of a circle (8cm diameter) and in the center. The 
stabilization requirement is to constrain the mass oscillations 
inside the current target for a continuous time interval of 4s. 
The unstable force field is continuously active throughout a 
whole experimental session, which included 4 target-sets (12 
center-out movements and 12 return movements, each target 
set). The expert user (male, 26 years old) practiced for 11 
sessions, alternating target-sets in which he aimed at 
adopting either the PSS (2 target-sets per session) or SSS 
strategy (2 target-sets per session).   

The following indicators were computed for each 
stabilization interval: 
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- Stiffness Size Index: ⎟⎟
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- Stiffness Orientation Index:  ( )αcosmeanSOI = , where 
α is the angle of the main axis of the stiffness ellipse with 
the medio-lateral axis x; 

- Effort Index:  ( )21 FF meanE += . 

III. RESULTS 
The typical trajectories for the two different strategies at 

the beginning and at the end of the learning phase are shown 
in Fig. 2: A (initial performance, SSS strategy); B (initial 
performance, PSS strategy); C (final performance, SSS 
strategy); and D (final performance, PSS strategy).  
 

 
 
Fig. 2.  Shift of stabilization from the forward/middle target to the central 
target. Trajectories of the virtual mass (red), left hand (blue), and right hand 
(green) are shown, together with the corresponding final positions (black 
dots/squares/triangles, respectively). A (initial performance, SSS strategy); 
B (initial performance, PSS strategy); C (final performance, SSS strategy); 
D (final performance, PSS strategy). 
 

The figure shows several interesting features: 1) in the 
SSS strategy the two hands are well separated sideways 
whereas in the PSS strategy they tend to overlap; 2) the 
excursion of the two hands is much larger than the excursion 
of the virtual mass in both strategies; 3) in the initial phase 
of learning the subject is unable to shift the equilibrium 
position of the mass in a direct way, but requires a couple of 
corrections (in the SSS case) and many more in the PSS 
case; 4) in the final phase of learning the equilibrium shift is 
direct in both strategies, following a rather straight path, but 
several control bursts are necessary for the stabilization in 
the new target area with the PSS strategy.  

Since the subject switched from one strategy to the other 
during each session, we can say that strategy switching does 
not appear to interfere with the learning of each single 
strategy.  

Fig. 3 plots the SOI vs. SSI values during all the sessions: 
red markers correspond to session in which the subject 
consciously attempted to implement the PSS strategy and the 
blue markers corresponds to the SSS sessions. The two 
clusters are well separated and this means that there is 
correspondence between intention and actual performance. 
In other words, there is a strongly significant difference in 
terms of magnitude and orientation of the VUBM stiffness 
matrix for the two strategies. With regard to the orientation 
of the stiffness matrix, in the SSS strategy it remains fixed to 
the optimal value (SSI=1), i.e. the major axis of the stiffness 
matrix is well aligned with unstable manifold of the field, 
whereas in the PSS strategy it is more variable. In both 
strategies, however, as learning proceeds SSI decreases, thus 
reducing the effort employed for implementing the 
strategies. Table I stores the corresponding numerical values.  

 

 
Fig. 3.  SSI versus SOI: average values with standard errors for each 
session. The red markers represent the values related to PSS whereas the 
blue markers those related to SSS. The black square refers to the first 
session and the black circle to the last session in each strategy.  
  

TABLE I 
PERFORMANCE DURING THE EXPERIMENT 

Strategy SSSi SSSf PSSi PSSf 

SSI 1.387± 
0.028 

1.231± 
0.025 

0.946± 
0.027 

0.782± 
0.025 

SOI 0.999± 
0.001 

0.997± 
0.001 

0.924± 
0.003 

0.753± 
0.008 

E  51.23± 
2.35 

38.98± 
2.33 

22.68± 
1.88 

14.52± 
1.48 

TT  3.6± 
0.3 

1.1± 
0.1 

16.5± 
2.2 

3.4± 
0.5 

MVP  0.013± 
0.002 

0.004± 
0.001 

0.020± 
0.002 

0.011± 
0.001 

Dlr  
0.177± 
0.006 

0.143± 
0.005 

0.018± 
0.003 

0.008± 
0.001 

All are average values for each target set. SSI = Stiffness Size Index; SOI = 
Stiffness Orientation Index; E = Effort Index[N]; TT = time to target[s]; 
MVP = magnitude of the velocity peaks in the stabilization interval for the 
virtual mass[m/s]; Dlr = distance between the two hands[m]; SSSi (first set), 
SSSf (last set) = Stiffness Stabilization Strategy; PSSi (first set), PSSf (last 
set) = Positional Stabilization Strategy. 
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With regard to the Effort index, the table shows that from 
the initial to the final session there is a significant decrement 
in both strategies. Moreover, the effort in the PSS strategy is 
always smaller than in the SSS strategy and this fact is 
further emphasized by the histogram in Fig. 4: the two 
distributions of the effort index, respectively for the two 
strategies, have no overlap.   

 
Fig. 4.  Histogram of the Effort Index: the red color refers to PSS and the 
blue to SSS. 
 

The learning process can be monitored by looking at the 
variation, over time, of performance indicators. For example, 
Fig. 5 plots the evolution of the TT indicator, but a similar 
behavior is exhibited by E. For both strategies there is an 
improvement trend, from higher to lower values of the 
required time. However, in the PSS strategy the decrement 
(about four times) is greater than in the SSS strategy (about 
two times). Moreover, the variability for any session is much 
greater in the PSS than in the SSS strategy. This suggests 
that the SSS strategy is “simpler” than the PSS strategy 
because training has a larger effect on performance. 

 
Fig. 5.  Average time to target in each session with standard error (red for 
PSS and blue for SSS). 
 

Regarding the virtual mass, during the stabilization 
interval, we have also identified the velocity peaks as the 
local maxima in a temporal window of 100ms, and 
calculated the relative magnitude MVP (as shown in Table 
I). For each strategy the MVP decreases significantly during 
the learning period and at the end of the PSS we can always 
see a higher value with respect to the SSS. This is in 
accordance with the general hypothesis underlying the PSS 
in which the control is mainly based on a sequence of little 
displacements around the target position.  

Finally, let us consider the mean distances between the 
two hands Dlr during the first and the last training sessions 
(Table I). In the SSS this parameter decreases for the 
improved ability to control the unstable environment with 
less co-activation, as also suggested by the Effort Index. In 
the PSS instead, what is suggested is the improvement of the 
bimanual coordination, i.e. the tendency of the subject to 
treat the two hands as a single unit.    

IV. DISCUSSION 
The experiments have demonstrated that if a subject is 

required to stabilize an unstable load and the dynamics of 
the load allows two different control strategies, namely a 
high-stiffness/high-effort strategy and a low-stiffness/low-
effort strategy, suitable training is sufficient to master both 
strategies. In general, this is a preliminary but relevant piece 
of information for the understanding of how the brain can 
switch from one strategy to another during complex motor 
tasks, as car drivers switch from one gear to another in 
different driving conditions.  

This study was limited to a single subject but in the near 
future we plan to extend it to a larger population in order to 
evaluate the robustness of the employed indicators. 

Another issue that requires specific experiments is 
generalization: to what extent the expert knowledge acquired 
during training can be generalized to novel, un-experienced 
conditions? 
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