
  

  

Abstract— Patient motivation is an important factor in 
rehabilitation. The difficulty level of the motor task, the 
awareness of the performance obtained, and the quantity and 
quality of feedbacks presented to the patient can influence 
patient motivation and produce different ways of acting and 
different performances. This study presents a Progressive Task 
Regulation algorithm able to evaluate the patient’s 
performance during training and automatically change the 
features of the reaching movement, so as to adapt automatically 
the difficulty level of the motor task to the patient’s ability. Use 
of the progressive task regulation algorithm should promote 
patient motivation throughout the course of treatment. 

I. INTRODUCTION 
Motivation is an important factor in rehabilitation and is 
frequently used as a determinant of rehabilitation outcome 
[1]. In particular, active engagement towards a treatment/ 
training intervention is usually equated with motivation, and 
passivity with lack of motivation. The difficulty level of the 
motor task, the awareness of the performance obtained, and 
the quantity and quality of feedbacks presented to the patient 
can influence patient motivation and produce different ways 
of acting and different performances. The last 10 years of 
experience with robot-assisted rehabilitation have shown 
that passive training driven by the robot is not an efficient 
training strategy [2]. This is due to the fact that passive 
movements transmit to the central nervous system different 
feedback from active movements. For this reason it is 
important to provide the trained subject the correct amount 
of assistance and an appropriate difficulty level of the motor 
task. The continuous challenging and assisting can yield 
substantial advantages in the process of motor learning and 
improve motor coordination. 

Performance-based progressive training schemes have 
been proposed as a way to gradually reduce the amount of 
guidance during training. Bell et al. proposed a 
performance-based progressive guidance scheme for self-
learning of a computer-based radar tracking simulation task, 
which showed significant beneficial effects [3]. A 
performance-based progressive robot-assisted therapy for 
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stroke patients was first proposed by Krebs et al. [4] in the 
field of neurorehabilitation. In Krebs’ approach, the patients 
were provided with guidance during a reaching task. In 
particular a specific algorithm used the mean velocity and 
the deviation of the patient’s motion from a normal 
movement trajectory to trigger and change the amount of 
guidance. Similarly, in another robot-assisted rehabilitation 
study for gait training, human motor adaptation to dynamic 
environments was modeled as a kinematic error (step height 
error) corrective learning process and the control gains of 
the guidance robot were adjusted at each trial based on the 
error [5]. The results of this study suggest that providing 
guidance only when needed is more effective than always 
assisting with a fixed amount. O’Malley et al. demonstrated 
that a progressive control guidance scheme reduces the 
dependency of participants on the guidance by adjusting the 
control gains based on individual participant performance. 
In particular, a progressive shared control algorithm was 
applied to expose subjects to an appropriate amount of 
haptic guidance based on their performance [6]. Basically, 
progressive control should permit the difficulty of the task to 
increase while gradually reducing assistance. The ADAPT 
device [7] provides adaptive and automatic presentation of 
tasks, but without any limb assistance. Therefore, none of 
the present robotic devices with assistance or associated 
control algorithms consider the possibility of changing the 
type of motor task administered to the patients or changing 
other features of the task in order to maintain a high level of 
patient involvement, and hence motivation, throughout the 
whole course of treatment. For this reason we developed a 
Progressive Task Regulation (PTR) algorithm able to 
evaluate patient’s performance during training and 
automatically change the features of the reaching movement, 
in order to adapt the difficulty level of the motor task to the 
patient’s ability. The aim of this work is to present the 
algorithm, its design and implementation strategies and its 
application with simulation  and real performance data.  

II. METHODS 

A. System description 
The algorithm was preliminarily tested using the 

performance data obtained in a group of 9 post-stroke 
patients (4 females and 5 males) who underwent robot-aided 
rehabilitation. The difficulty level of the task was manually 
changed by the therapist during the treatment. All patients 
were in chronic stage, their unilateral cerebrovascular 
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Figure 1. Flow diagram of the Progressive Task Regulation Algorithm 

accident (CVA) having occurred at least 6 months prior to 
enrolment (32±27 months from CVA). Inclusion criteria 
were the presence of a single unilateral CVA and the 
presence of at least 10° of motion in the treated joints 
(shoulder and elbow); this latter criterion ensured that only 
patients who could really be motivated by use of the robot 
device were enrolled. The two DoF elbow-shoulder 
manipulator “Braccio di Ferro” was used for the treatment of 
our patients [8]. The robot apparatus included an end-
effector, normally consisting of a sensorized handle which is 
grasped by the patient and moved through the workspace of 
the device (i.e. the horizontal plane). Patients had their trunk 
fastened to the back of the chair by a special jacket to limit 
compensation phenomena and were placed at the robot desk 
facing a video screen that provided visual feedback of the 
assigned motor task. The patient's paretic limb was 
supported at the elbow by a low friction pad that slid along 
the surface of the robot workspace. Patients had to make a 
sequence of point to point reaching movements; a yellow 
circle displayed on the screen indicated the task’s starting 
position, a red circle the task’s target position, and a green 
circle the current position of the handle. Patients were 
trained twice a day (40 minutes/ session), 5 days a week for 
at least three weeks. A practice session preceded the 
treatment, during which detailed instructions were given to 
shorten the exercise learning phase. During the exercise, the 
device stored details of the handle positions, and device 
status, reporting information about the different robot 
conditions (patient active, robot active, rest, etc.) acquired at 
a rate of 100 Hz.. 

B. Difficulty Level of Motor Task 
Usually a motor task is characterized by a set of features 

determining the so-called “difficulty level of the task”; a 
change of these features usually produces an 
increase/decrease of the task’s difficulty. In particular, we 
have identified the following task features: 

1) Reaching task sequence 
 As previously described, the patient is required to make 

a sequence of point-to-point reaching movements in the 
horizontal plane; patients are instructed to move the robot 
handle from the starting point to the end point following the 
straight line connecting them. In practice the exercise is 
similar to the tracing of a geometric shape. These shapes 
have increasing number of edges and complexity (a square 
represents the easiest reaching task, and a eight directions 
reaching task the most difficult).  

2) Type of assistance 
In the present robot version we decided to maintain the 

force magnitude assisting the patient movements at a 
predefined  value for all the difficulty levels of the task. 
Therefore, the algorithm can only change the time of its 
actuation and its direction (assistive or repulsive force 
moving the arm directly to the target.). Based on these 
conditions the system we implemented is able to provide 
three types of assistance: 

Time-Triggered Assistance (TTA). This type of assistance 
is used in more compromised patients. At the beginning of 
the task the patient is free to move the arm within the 
workspace, but two seconds after the visualization of the 
target on the robot display, the assistive force comes into 
play at a very low magnitude. The assistance is then 
gradually increased, according to a ramp shape, up to a pre-
defined value (soft application of assistance). Then the force 
is maintained at that magnitude so as to guide the patient’s 
arm to the target. In this way the patient is challenged to 
independently begin the motor task but at the same time 
helped in any case to complete the movement, so motivating 
the patient to perform the exercise. 

Activity-Triggered Assistance (ATA). This type of 
assistance has the objective of enhancing and stimulating the 
patient’s voluntary motor activity. The patient is requested 
to move the arm from the starting point to the target without 
any restriction. If during the motor task execution the patient 
cannot complete the task autonomously, the robot evaluates 
the current position and, after a period of 3 s in the same 
place, guides the patient's arm to the target position. 

Negative Assistance (NA). In this type of assistance the 
patient is required to execute the reaching task, working 
against a resistive force of constant magnitude. This task is 
designed for less compromised patients or for those who 
have already made a significant motor recovery and need 
mainly to improve the quality of their motor control. This 
type of exercise should allow to increase the number of 
patients who can benefit from robotic treatment. 

3) Target distance 
The distance between the starting position and the target 

can be selected from two options: 150 and 220 mm. An 
increase of  the distance is usually implemented before any 
change of the shape. 

4) Virtual slot 
The learning process occurring during the course of 

rehabilitation refines the selection and coordination of the 
appropriate muscular contractions, and implies the creation 
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of new motor synergies by combining forces generated 
across multiple joints in novel kinematic and dynamic 
patterns. In order to stimulate the patient to recruit the 
correct muscle synergies during the movement towards the 
target, we have introduced a virtual slot. Within the virtual 
slot the patient is free to move anywhere without any 
resistance; conversely, outside the slot, movements are 
prevented.  

Different patients usually have different motor skills and 
different rates of motor learning. Therefore, they exhibit 
different abilities in the execution of specific tasks with 
different features. We thus took into account the spectrum of 
variation of the previously defined features, and defined a 
list of tasks with increasing difficulty levels. This list 
included for example different reaching sequences like 
drawing a square or more complex geometrical shapes. The 
task list was sorted by an expert therapist who assigned  the 
difficulty levels from the easiest to the most difficult. 

C. Measurement of patient’s performance 
Before training, the patient undergoes an evaluation 

session in which, starting from the workspace center, he/she 
must perform at least two reaching movements in 8 specific 
movement directions (N, NE, E, SE, S, SW, W, NW). 
During the evaluation session the device does not generate 
any assistive force so that only motor behavior due to the 
patient’s voluntary activity is evaluated. During this session 
the device records the position of the end-effector and 
computes the percentage of trajectory traveled by means of 
the patient’s voluntary activity (AMI), the mean velocity 
(MV), the normalized path length (nPL) and the mean 
distance (MD) from the theoretic trajectory [9]. After the 
start of training the performance parameters, reported above, 
are recursively computed at the end of each training session 
in order to verify if a change in the difficulty level is 
required (Fig.1). When the TTA assistance is selected  the 
algorithm computes only the AMI parameter during the time 
window without assistance (2 s window).  

D. Rules for difficulty level transition 
The PTR algorithm adjusts the difficulty level of the 

exercise on a session by session basis. As in the algorithm 
presented by O’Malley and coll. [7], for each parameter the 
process of difficulty level adaptation is controlled by a 
moving average procedure obtained from three consecutive 
training sessions. In particular, we defined: 
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where Pi is the performance vector, Pavg2 is the average 
of the performance obtained in the current and in the two 
previous training sessions and Pavg1 is the average of the 
performance  in the previous three sessions. If Pavg2 is  
greater than Pavg1 for at least three consecutive sessions, 
then the difficulty level of the task is increased. 
Furthermore, if the average performance is greater than a 
threshold value the difficulty level is increased. Conversely, 
if Pavg2 is lower than Pavg1 in the following session or 
lower than a threshold value, the difficulty level of the task 
is decreased; this allows to prevent the patient working for a 
long period at an unsuitable level of difficulty. The threshold 
values were determined heuristically according to the 
developed experience of a pool of expert physiotherapists. 
The nPL value is taken as a negative value so  that increases 
in the parameter equal increases of performance. When the 
algorithm detects the need for a change of the difficulty 
level, it requires the therapist’s consensus through a specific 
dialog panel on the computer display. The therapist can 
decide whether to accept the change or refuse it (leaving the 
patient working in the same conditions). 

III. RESULTS 
The algorithm was first tested on some simulation data in 

which the performance of the patient assumed synthetic 
improvements and worsening. Fig. 2 (Panel A) shows the 
results of a typical simulation case. As one can see, the 
algorithm suggested a difficulty level change at session 8, 25 
and 30. Subsequently the algorithm was tested using the 
performance data obtained in a group of 9 post-stroke 
patients who underwent robot-aided rehabilitation and where 
the difficulty level of the task was manually changed by the 
therapist. Table 1 reports for each subject the number of 
manual changes, the number of automatic changes and the 
difference between automatic and manual changes. The 
results show that in 4 subjects the PTR algorithm and the 
therapist suggested the same number of changes of difficulty 
level. In 2 patients the algorithm proposed one additional 

TABLE I 
PTR ALGORITHM RESULTS 

 Number of 
manual 
changes 

Manual 
changes 
Session # 

Number of 
automatic 
changes 

Automtic 
changes 
Session # 

Automatic
vs.Manual 
Difference 

P1 1 20 2 8,19 +1 

P2 1 18 2 26,31 +1 

P3 1 9 1 7 --- 

P4 1 9 3 7,15,21 +2 

P5 1 7 3 7,18,22 +2 

P6 1 --- 0 --- --- 

P7 0 --- 0 --- --- 

P8 0 --- 0 --- --- 

P9 0 16 4 9,16,22,26 +3 
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Figure 2. Time course of the robot measured parameters used by the Progressive Task Regulation algorithm and the suggested difficulty level changes (vertical 
lines).  Panel A shows the results obtained using simulation data. Panel B shows the comparison between manual (therapist selection) and automatic changes. 
The green lines of each panel represent the algorithm-suggested changes and the magenta line on panel B represents the actual change independently selected 
by the therapist. 

change with respect to the therapist. In the last 3 subjects the 
algorithm proposed two or more changes. This result is not 
surprising because the automatic regulation algorithm was 
tested in an open loop condition and hence a greater 
sensitivity of the algorithm was expected.  

IV. DISCUSSION AND CONCLUSIONS 
The PTR algorithm we implemented shows a behavior 

quite similar to the manual selection implemented by the 
therapists. This should imply that the difficulty level of the 
task is adapted automatically to the patient’s residual 
capacity. The availability of this type of architecture should 
allow to speed-up the learning process of different motor 
tasks thereby allowing an easier treatment of different 
pathologic conditions of the neuromuscular system. In 
addition the automatic changes of difficulty levels, 
simulating a video-game experience, may be very useful for 
maintaining the patient's interest high during the whole 
training, so inducing a better performance and outcome. The 
results reported here should be interpreted in the light of an 
open loop testing procedure. Of course a testing protocol to 
evaluate the algorithm performance in a “closed loop” 
condition (i.e. a condition in which the automatic regulation 
will influence the difficulty level selection) is mandatory. 
Future studies need to address also the assessment of  the 
rate of improvement produced by this algorithm in post-
stroke patients in recent and chronic conditions. 
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