
 

 

 

  

Abstract— Congestive heart failure (CHF) is a leading cause 

of death in the United States. WANDA is a wireless health 

project that leverages sensor technology and wireless commu-

nication to monitor the health status of patients with CHF. The 

first pilot study of WANDA showed the system’s effectiveness for 

patients with CHF. However, WANDA experienced a consider-

able amount of missing data due to system misuse, nonuse, and 

failure. Missing data is highly undesirable as automated alarms 

may fail to notify healthcare professionals of potentially dan-

gerous patient conditions. In this study, we exploit machine 

learning techniques including projection adjustment by contri-

bution estimation regression (PACE), Bayesian methods, and 

voting feature interval (VFI) algorithms to predict both 

non-binomial and binomial data. The experimental results show 

that the aforementioned algorithms are superior to other me-

thods with high accuracy and recall. This approach also shows 

an improved ability to predict missing data when training on 

entire populations, as opposed to training unique classifiers for 

each individual. 

I. INTRODUCTION 

ONGESTIVE heart failure is a leading cause of death in 

the United States with approximately 670,000 individuals 

diagnosed every year [1]. The sequelae of CHF are well 

known, with frequent decompensation of the chronic state 

resulting in recurrent hospitalizations. Experts believe that 

constant monitoring of patients with CHF is essential to a 

patient’s health.  

 Remote patient monitoring is a promising solution for an 

expanding population of CHF patients who are unable to 

access clinics due to the lack of resources, location, or infir-

mity. Medical care facilitated by remote technology has the 

potential to enable early detection of key clinical symptoms 

indicative of CHF-related decompensation. Such remote 

technologies can also enable health professionals to offer 

surveillance, advice, and continuity of care to trigger early 

implementation of strategies that enhance adherence beha-

viors. WANDA [2][3] is a wireless health project that leve-

rages sensor technologies and communication to monitor the 

health status of patients with CHF. WANDA monitors vital 

signs and other information deemed critical to CHF assess-
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ment, including weight, blood pressure, heart rate, activity, 

and daily somatic awareness scale questionnaires [4][5][6]. 

The effectiveness of WANDA for CHF patients was shown in 

[3]. 

 However, the first randomized trial of WANDA expe-

rienced a considerable amount of missing data: only 33% of 

the somatic questionnaires were completed; and 55.7% of 

data had missing values for weight, systolic and diastolic 

blood pressure, and heart rate data. Moreover, 22.2% of pa-

tients experienced system misuse and requested help to ac-

custom themselves the WANDA’s technologies. Missing data 

was further caused by system nonuse and service disorder 

(such as a network failure, resulting in as much as 6.3% of all 

of the missing data). Analysis found that system non-use was 

often due to patients’ lack of time or interest to participate in 

the study. Notably, other studies have experienced similar 

data loss [5][7]. It is critical for a remote monitoring system 

such as WANDA to collect and store all monitored vital signs. 

Any unhealthy changes in a patient’s vital signs must be 

addressed promptly in order to prevent further degradation of 

a patient’s health.  

 Missing data is especially common in randomized con-

trolled trials. Wood's study [8] showed that 89% of 71 trials 

published in 2001 in well-known journals (British Medical 

Journal, BMJ; Journal of the American Medical Association, 

JAMA; Lancet; and New England Journal of Medicine, 

NEJM) reported having partly missing outcome values. Many 

studies applied last observation carried forward, worst case 

imputation, and complete case analysis techniques that can 

lead to biased results. To date, there has been no study on 

missing data imputation in CHF randomized trials.  

The objective of this study is to enhance the accuracy of 

CHF missing data imputation using different data mining 

techniques.  Data imputation allows a patient monitoring 

system to detect an unhealthy change in a vital sign even 

when that data is not collected by the system. In this work, we 

exploit the projection adjustment by contribution estimation 

(PACE) regression method for predicting and imputing 

non-binomial data such questionnaire responses. Bayesian 

methods and voting feature interval (VFI) are used to impute 

binomial data. The results of these methods are compared 

using accuracy and correlation efficient values for 

non-binomial cases, and recall values for binomial cases. The 

previous methods are compared with several other popular 

data mining methods. The experimental results show that the 

aforementioned methods are superior to other methods for 

CHF patient data imputation.  
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II. METHODOLOGY 

A. Subjects and Datasets 

WANDA was approved by the UCLA institutional review 

board (IRB). Since November 2009, the WANDA system has 

been used for health data collection on 26 different subjects. 

The population of the participants is approximately 68% male; 

40% White, 13% Black, 32% Latino, and 15% Asian/Pacific 

Islander, with a mean age of approximately 68.7 ± 12.1. Study 

participants were all provided with Bluetooth weight scales, 

blood pressure monitors, land line gateways, and personal 

activity monitor devices [2]. Each captured data instance for 

the study comprises 37 different attributes, including: time-

stamps; weight; diastolic/systolic blood pressure; heart rate; 

metabolic equivalents (METs); calorie expenditure; and nu-

meric responses to twelve somatic awareness questions. Each 

data instance is gathered from each subject once a day. The 

total number of instances used in this study is 1090.  

This study uses the missing at random (MAR) hypothesis 

[9]. MAR assumes that missing data is dependent on observed 

data. Hence, missing data can be predicted by resident data.  

B. Non-binomial Case Imputation 

WANDA employs the Heart Failure Somatic Awareness 

Scale (HFSAS, [10]) which is a 12-item Likert-type scale to 

measure awareness of signs and symptoms specific to CHF. A 

4-point Likert-type scale is used to ascertain how much a 

patient is bothered by a symptom (0: not at all, 1: a little, 2: a 

great deal, 3: extremely).  

In order to predict missing answers, we exploit the projec-

tion adjustment by contribution estimation regression algo-

rithm (PACE) [11] (rounding any non-integer value returned 

by PACE). This method is based on maximum likelihood 

estimation (MLE) and an empirical Bayes framework to mi-

nimize the Kullback-Leibler (KL) distance between the orig-

inal and the estimation function. First, the PACE algorithm 

transforms parameters using MLE’s asymptotic normality 

property [12] to convert the original parameters. The algo-

rithm utilizes the empirical Bayes estimator in (1): 
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Using (2), the developed algorithm minimizes the KL distance 

between f and f� in (2): 
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This method especially shows better results in high dimen-

sional data spaces and is applied to complete cases that have 

all 12 answered questions to evaluate the accuracy. 

C. Binomial Case Imputation 

A binomial approach is used to predict alarms normally 

triggered by abnormal data values (e.g., drastic weight 

changes, unhealthy blood pressure, etc.) given missing data. 

For example, the system should trigger an alarm if a patient 

has an extreme change in weight – even when the weight value 

was not collected by WANDA. We use naïve Bayes, a Baye-

sian network, and VFI to detect such changes in order to alert 

caregivers. 

 Naïve Bayes and Bayesian network classifiers are algo-

rithms that approach the classification problem using the 

conditional probabilities of the features [13]. A Bayesian 

network is a directed acyclic graph (DAG) over a set of va-

riables X, where the outgoing edges of a variable x)	specifies 

all variables that depend on x). The probability of an outcome 

is determined as: 

 

P(X) = ∏ p	x|par	x
.∈0 
 
 

(3) 

where X = {x3, x4, … , x6} is a set of variables, and par(x) is 

the set of parents of x in a Bayesian network. The probability 

of the instance belonging to a single class is calculated by 

using the prior probabilities of classes and the feature values 

for an instance. Naive Bayesian method assumes that features 

are independent and there are no hidden or latent attributes in 

the prediction process. As such, the experimental results for 

naïve Bayes and Bayesian network can be slightly different as 

p(class) = 
389	:;<==
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 for naïve Bayes and p(class) = 

 
Figure 1. Accuracies of the predicted data for non-binomial cases 
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TABLE 1. CORRELATION COEFFICIENT VALUES OF EACH TECHNIQUE FOR NON-BINOMIAL DATA 

 

  a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 

Linear Regression 0.61 0.79 0.41 0.28 0.3 0.78 0.44 0.88 0.29 0.9 0.42 0.84 

Simple Linear Regression 0.5 0.75 0.34 0 0.2 0.85 0.32 0.9 0.24 0.92 0.4 0.85 

Pace Regression 0.62 0.79 0.42 0.3 0.32 0.82 0.52 0.88 0.29 0.9 0.42 0.85 

Isotonic Regression 0.53 0.76 0.23 0.12 0.18 0.86 0.38 0.89 0.1 0.92 0.29 0.85 

 

3185



 

 

 

A
B89	:;<==


9	:;<==
×A
B89	)>=?<>:@=


 for Bayesian network where N(x) is the 

number of sets or instances. 

VFI is a categorical classification algorithm and considers 

each feature independently as Bayes methods [14]. The clas-

sification of a new instance is based on a vote among the 

classifications built by the value of each feature. While 

training, the VFI algorithm constructs intervals for each fea-

ture. For the classification, a single value and the votes of each 

class in that interval are calculated for each interval. For each 

class c, feature f gives a vote value: 
 

feature_vote[f,c] = 
)>?@DE<;_:;<==_:GH>?[J,),:]

:;<==_:GH>?[:]  (4) 

 

where interval_class_count[f, i, c] is the number of instances 

of class c which is a member of interval i of feature f. The 

class with the highest total vote is predicted to be the class of 

the test instance. 

 In the Bayes methods, each feature participates in the clas-

sification by assigning probability for each class and the final 

probability of a class is the product of each probability 

measured on each feature. In VFI, each feature distributes its 

vote among classes and the final vote of a class is the sum of 

each vote given the features. 

All 1090 instances of data are complete (i.e., contain all 37 

data values). Instances were divided into to two groups: 

training and testing. Values from the testing set predicted by 

the data imputation techniques were compared to their actual 

values to evaluate the effectiveness of each system.  

III. RESULTS 

For non-binomial data, PACE [11], linear [16], simple li-

near [17] and isotonic regression [18] methods were applied. 

Table 1Error! Reference source not found. shows the cor-

relation coefficient values of each method to predict each 

answer ai. Correlation coefficient is a measure of the least 

square fitting values between the predicted and original data. 

For a given N data points (X,Y), the correlation coefficient 

ρX,Y is given as equation (5) where COV(X,Y) is a covariance 

between X and Y and σ0  , σU  are standard deviation values of 

X and Y. The experimental results show that PACE regression 

method works better on average than other given regression 

methods.  
 

ρX,Y = 

VWX	0,U

YZ	×Y[  (5) 

  

After calculating the coefficient and constant variables, the 

developed algorithm determines missing values using PACE 

regression (rounding any non-integer value returned by 

PACE). The accuracies of the obtained values range between 

85.7% and 98.5% (Figure 1). 

 The binomial case predicts a potential abnormal vital sign 

when no data value exists within WANDA’s database using 

other existing attributes. C4.5 [19], random tree [20], naïve 

Bayes [21], Bayesian network [22], VFI [23], nearest neigh-

bor [24], PART [25], DTNB [26], decision table [27], and 

rotation table [28] algorithms were applied and their recall 

values were compared. For each method, ten-fold cross vali-

dation was applied. In ten-fold validation, the original sample 

is randomly partitioned into ten subsets and a single subset is 

held as a testing model, with the remaining nine subsets are 

used as training data. This cross-validation process is then 

repeated ten times, using a new subset as a testing model for 

each repetition. Recall values are given as:  
 

recall = 

\]
\]8^> (6) 

 

where T] is true positive and F> is false negative.  The expe-

rimental result (Table 2) shows that naive Bayes, Bayesian 

network, and VFI have recall values of up to 0.7 for weight, 

0.714 for systolic blood pressure, 0.889 for diastolic blood 

pressure and 0.906 for heart rate values.  

 Classifiers were trained in two ways. First, unique clas-

sifiers were created for each individual where only data col-

lected from an individual was used to predict values from the 

same individual. Second, a grouped classifier was created 

using data from the entire population. Both the individual and 

grouped classifiers were compared using ten-fold validation to 

test data from 16 patients. The recall values of weight, blood 

pressure, and heart rate are improved when training on the 

entire group’s data as compared with training each individu-

al’s data separately (TABLE 3). For questionnaire data, the 

accuracies of results were also better when training on all 

patients’ data. When training individually, 75% of patients’ 

data showed 0% accuracy. This is because the entire group has 

bigger number of data and many individual share similarities 

in monitored attributes, such as age, symptoms of CHF, etc. 

TABLE 2. RECALL VALUES OF WEIGHT, SYSTOLIC, DIASTOLIC BLOOD PRESSURE AND HEART RATE VALUES 

  Weight Systolic Diastolic Heart Rate 

C 4.5 0 0 0.17 0.16 

Random Tree 0.05 0 0.11 0.19 

Naïve Bayes 0.7 0.71 0.89 0.91 

Bayesian Network 0.65 0.71 0.78 0.78 

VFI  0.65 0.71 0.67 0.78 

Nnge 0.05 0 0.11 0.28 

PART 0.08 0 0.28 0.25 

DTNB 0.03 0 0.44 0.13 

Decision Table 0 0 0.22 0.06 

Rotation Forest 0.05 0 0.17 0.03 
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IV. CONCLUSION 

Heart failure is a leading cause of death in the United States 

with approximately 4,600,000 Americans suffering from heart 

failure. The wireless health monitoring system WANDA 

exploits sensors and wireless communication techniques to 

monitor and provide guidance and feedback to patients with 

CHF. WANDA was shown to be highly effective for patients 

with CHF [3]. However, the first pilot study of WANDA 

experienced a considerable amount of missing data.  

This study enhanced the accuracy of the CHF missing data 

using the PACE regression method for predicting and im-

puting non-binomial data; and Bayesian methods and voting 

feature interval for binomial data. The experimental results 

show that PACE regression works better than linear regres-

sion, simple linear regression, and isotonic regression me-

thods with accuracy values of more than 85.7%. The expe-

riment comparing Bayes and VFI methods with other algo-

rithms proves that Bayes and VFI algorithms work better 

(Table 2) with recall values of up to 0.7 for weight, 0.714 for 

systolic blood pressure, 0.889 for diastolic blood pressure and 

0.906 for heart rate values. This study also showed that in-

creased accuracy is obtained by training on a large population 

as opposed to training the classifiers for each individual in-

dependently.  
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TABLE 3. RECALL VALUES OF DATA FOR INDIVIDUAL AND GROUP 

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 Group 

weight 

Naïve Bayes 0 0 0 0 0 .33 0 0 0 0 0 1 0 .65 0 0 .7 

Bayes Net 0 0 0 0 0 .33 0 0 0 0 0 0 0 .88 0 0 .65 

VFI 0 0 1 0 0 .33 0 .33 0 0 0 1 0 .82 0 0 .65 

systolic 

Naïve Bayes 0 .33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .71 

Bayes Net 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .71 

VFI 0 .33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .71 

diastolic 

Naïve Bayes 0 .85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .89 

Bayes Net 0 .39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .78 

VFI 0 .62 0 0 0 0 0 0 0 0 0 0 0 0 0 0 .67 

heart 

rate 

Naïve Bayes 0 .54 0 0 0 0 0 0 0 0 0 0 0 0 0 .92 .91 

Bayes Net 0 .31 0 0 0 0 0 0 0 0 0 0 0 0 0 .75 .78 

VFI 0 .69 0 0 0 0 0 0 0 0 0 0 0 0 0 .67 .78 
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