
  

  

Abstract—We recently presented a comprehensive 
automated off-line method for supervised respiratory event 
classification from uncalibrated respiratory inductive 
plethysmography signals. This method required training with a 
sample of clinical measurements classified by an expert. This 
human intervention is labor intensive and involves subjective 
judgments that may introduce bias to the automated 
classification. To address this we developed a novel method for 
unsupervised respiratory event classification, named AUREA 
(Automated Unsupervised Respiratory Event Analysis). This 
paper describes the algorithm underlying AUREA and 
demonstrates its successful application to respiratory signals 
acquired from infants in the postoperative recovery room. The 
advantages of AUREA are: first, it provides real-time 
classification of respiratory events; second, it requires no 
human intervention; and lastly, it has substantially better 
performance than the supervised method. 

I. INTRODUCTION 

NFANTS are at increased risk of life threatening apnea 
following surgery/anesthesia [1]. These Postoperative 

Apnea (POA) events are rare and so long data records are 
required to study their relation to other respiratory events. 
The acquisition of such large data sets has been feasible only 
rarely because of the need for manual scoring [2], which is 
labor intensive, expensive, and suffers from low inter-scorer 
agreement [3]. 

In [4] we presented a comprehensive, automated, off-line 
method for supervised respiratory event classification from 
Respiratory Inductive Plethysmography (RIP) signals. This 
method provides a reliable and repeatable means of 
analyzing the large respiratory data records required for the 
study of POA. It uses several test statistics to classify the 
respiratory state into one of four categories: Pause, 
Movement Artifact, Asynchrony, and Quiet Breathing.  

The main disadvantage of this method is that it requires a 
sample of measurements classified by an expert observer to 
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determine the optimum thresholds for the test statistics. This 
is labor intensive and time consuming since it requires the 
manual classification of respiratory events from several 
subjects. Moreover, it involves the subjective judgment of 
the expert and the low intra-scorer reliability will reduce its 
accuracy. For these reasons, we have developed an 
unsupervised event classification method that eliminates the 
need for human intervention. 

The paper is organized as follows: Section II describes the 
acquisition of infant data, the test statistics used for RIP 
analysis, and the “gold” standard used to evaluate 
performance; Section III describes the supervised and 
unsupervised automated methods developed for respiratory 
event classification; Section IV reports the performance of 
these methods when applied to the infant data; and Section 
V provides concluding remarks. 

II. INFANT DATA ACQUISITION AND ANALYSIS 

A. Subjects and Data Acquisition 

We acquired data from 16 infants (12 males), 
postconceptional age 42.8±2.1 weeks, weight 3.7±1.0 kg, in 
the postoperative period after elective herniorrhaphy with 
general anesthesia. Written informed parental consent was 
obtained and the study was approved by the Institutional 
Ethics Review Board. 

Upon arrival at the postanesthesia care unit, infant 
respibands (Ambulatory Monitoring Inc., Inductobands, 
Ardsley, NY, USA) were placed around the ribcage and 
abdomen and interfaced with Respiratory Inductance 
Plethysmograph (Ambulatory Monitoring Inc., Battery 
Operated Inductotrace, Ardsley, NY, USA).  An infant 
oximeter probe (Nonin 8600 Portable Digital Pulse 
Oximeter, Plymouth, MN, USA) was taped to a hand or 
foot.  The analogue outputs were low-pass filtered (cut-off 
frequency 10 Hz) with an 8-pole Bessel anti-aliasing filter 
(Kemo, Jacksonville, FL, USA) digitized and sampled at 50 
Hz (all respiratory-related information from RIP and all 
information from the oximeter was observed at frequencies 
below 5 Hz [5]). The signals were recorded on a computer 
using MATLABTM (The MathWorks, Inc., Natick, MA, 
USA) for off-line analysis. Data were recorded for 6 to 12 
hours in accordance with the Montreal Children’s Hospital 
practice guidelines for apnea monitoring in term and former 
preterm infants. No attempt was made to calibrate the RIP 
signals in absolute terms. 
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B. Test Statistics for RIP Analysis 

Test statistics were computed from the RIP data for use in 
detecting pauses, movement artifact, and asynchrony. The 
statistics used here are similar to those we presented in [4], 
with some modifications to permit their use in real-time. 

 The pause test statistic quantifies the power of quiet 
breathing in either the ribcage (rc) or the abdomen (ab) RIP 
signal. Pauses are defined by a lack of respiratory effort and 
so the RIP signals are expected to have low power in the 
quiet breathing band, which we determined to be from 0.4 – 
2.0 Hz [4]. The original version of this statistic used the 
entire data record to determine the median power associated 
with quiet breathing, and so could only be used off-line. To 
eliminate this constraint, we modified the statistic to 
estimate the power associated with quiet breathing from the 
previous NQ samples, instead of the complete recording. The 
modified pause test statistic for rc was defined by: 
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where NQ is the length of the window used to estimate the 
median quiet breathing power at each sample n, and 
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is the power in the quiet breathing band over a window of 
length NP << NQ. Here rcbp is the band-pass filtered ribcage 
signal (using a band-pass filter with cut-off frequencies at 
0.4 Hz and 2.0 Hz). The values of prc are expected to be 
close to 1 during quiet breathing and lower during pauses. A 
similar statistic pab is computed for the abdomen.  

The movement test statistic we used previously compares 
the power in the movement artifact band (i.e., 0 - 0.4 Hz) to 
that in the quiet breathing band. It is calculated using the 
outputs of a filter bank spanning the frequencies 0 – 2 Hz; 
each filter with a 0.2 Hz bandwidth. The filters were 
grouped into two sets, J={1,2} and I={3,4,…,13} to span the 
Movement Artifact and Quiet Breathing bands respectively. 
Thus, the movement test statistic for rc was defined as: 
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is the power of rci, the output of the ith filter in the bank, 
computed over a window of length NM. The values of mrc are 
close to 1 during Quiet Breathing and shift towards -1 
during Movement Artifacts. A similar movement artifact 
detection statistic (mab) was defined for the abdomen. 

An alternative movement detection test statistic [6] is the 
sum of the root mean square (RMS) of the ribcage (rc) and 
abdomen (ab) signals. It may be a useful complement to the 

frequency information obtained with (2). It was defined as: 
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where a=(NR-1)/2, and NR is the length of the window used 
to calculate the RMS value. 

The asynchrony test statistic estimates the phase between 
rc and ab using selectively filtered RIP signals (rcS and abS) 
to improve the signal-to-noise ratio. These signals are 
obtained by making rcS[n] = rcimax[n] and abS[n] = 
abimax[n], where the subscript imax indicates the number of 
the filter whose output has the highest power for ab. 

The ribcage signal was then converted to a binary signal 
as rcS

b[n] = 1 if rcS[n] ≥ 0 and rcS
b[n] = 0 otherwise. The 

abdomen signal was converted similarly to abS
b[n]. Then the 

Exclusive-OR (XOR) was computed between these binary 
signals as u[n] = rcS

b[n] XOR abS
b[n], and the result was 

used to define the asynchrony test statistic as 
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where NA is the length of the window used to estimate the 
phase in the range [0, 1], corresponding to [0o, 180o]. 

For a detailed analysis and graphical examples of the test 
statistics, refer to [4]. 

C. Manual Classification 

To provide a “gold” standard for comparison with 
automated results, one of the investigators (KAB) manually 
classified events as described in [4], in a random sample of 
epochs from the first 9 infant data sets acquired. Only a 
subset of the 16 recordings was manually classified due to 
the time consuming and labor intensive nature of the task. 
Events were classified into one of the following categories: 
pause, movement artifact, asynchrony, and quiet breathing. 
Table I shows the number of events classified in this way. 

III. AUTOMATED EVENT CLASSIFICATION 

This section describes the supervised and unsupervised 
methods we devised to classify automatically the respiratory 
data from these statistics.  

A. Supervised Classification 

In [4] the presence of events was determined using 
detectors for pause (DP), movement artifact (DM), and 
asynchrony (DA). The detectors compared test statistics to 
thresholds and were defined as: DP=1 if prc ≤ γP

rc AND pab ≤ 
γP

ab, DP=0 otherwise; DM=1 if mrc ≤ γM
rc AND mab ≤ γM

ab, 

TABLE I 
MANUALLY CLASSIFIED EVENTS 

Event Number of Events 

Pause 1 605 
Movement Artifact 2 523 
Asynchrony 839 
Quiet Breathing 7 105 

 

3202



  

DM=0 otherwise; and DA=1 if φ ≥ γA, DA=0 otherwise. Here 
γP

rc, γP
ab, γM

rc, γM
ab and γA were the thresholds for prc, pab, 

mrc, mab and φ respectively. A value of 1 corresponded to 
event detected. 

To determine the thresholds, we first had an expert 
clinician manually classify recordings from a representative 
sample of subjects. These classifications were then used to 
estimate two nonparametric probability density functions 
(PDFs) for each test statistic: one for samples classified as 
containing the event (Pause, Movement Artifact or 
Asynchrony), and one for samples classified as Quiet 
Breathing. Considering the test statistics as event detectors, 
the PDFs were used to generate the Receiver Operating 
Characteristics (ROC) curves relating the probability of 
detection (PD) to the probability of false alarm (PFA) as a 
function of the threshold. The value of the threshold for each 
test statistic was selected to provide the best tradeoff 
between PD and PFA, that is the point in the ROC curve 
farthest from the chance line (PD = PFA). Note that on 
average, each recording contained 10 hrs of respiratory data 
so the manual analysis was very labor intensive. 

The respiratory state was determined by combining the 
output of the detectors DP, DM and DA with the following 
precedence: Pause had the highest priority so when a pause 
was detected the other states were forced to zero. Movement 
Artifact was assigned the second level of precedence with 
the output of asynchrony and quiet breathing states forced to 
zero when movement was detected. Asynchrony detection 
had the third level of precedence. Samples not assigned to 
any categories were scored as Quiet Breathing. 

B. Unsupervised Classification 

The objective of the present work was to eliminate the 
need for human intervention by developing an unsupervised 
event classification procedure. To do so we chose K-means 
[7] clustering which automatically partitions a data set into k 
clusters, using f inputs. 

The Euclidian distance, frequently used for k-means, is an 
appropriate metric for numeric inputs. Considering this, the 
decision boundary between clusters j=1,2,…,k, and 
m=1,2,…,k ≠ j, forms a hyperplane containing the point 
γjm∈ℝ f with normal vector vjm∈ℝ f, both determined by: 
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where cj∈ℝ f and cm∈ℝ f are the centers of clusters j and m 
respectively, and wjm=0.5 is the decision boundary 
weighting factor that determines the proportion of the 
Euclidean space covered by each cluster. The association of 
each instance xi to cluster j (i.e., set Cj) is defined as 

( ) 0,i j jm i jmC m j∈ ↔ ⋅ − < ∀ ≠x v x γ . (6) 

We first applied k-means to our data set using inputs 
ln(prc), ln(pab), mrc, mab and φ, to obtain 4 categories (the 
statistics prc, pab and r+ were logarithmic-transformed to 
provide a more evenly scaled input space).  This provided 

acceptable results when the number of samples for each 
event was similar (i.e., balanced). However, for unbalanced 
sampling the clusters were biased towards the category with 
the most samples. This is a problem with respiratory events, 
where Pause events are rare (< 10% of the events) while 
Quiet Breathing is common (> 50%). To correct for this, we 
modified the decision boundary weighting factor to reflect 
the relative proportion between clusters j and m as 

j
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where wj and wm are the proportion of samples that belong to 
cluster j and m respectively once k-means has converged. 

Fig. 1 shows the boundaries for an example with f = 2 
inputs and k = 4 clusters, before and after applying this 
correction. Unfortunately, shifting all the decision 
boundaries at once using the unbalanced sampling 
correction generates an uncertainty region in the input space, 
where instances are not assigned to any cluster. To avoid 
this, we defined the Automated Unsupervised Respiratory 
Event Analysis method (AUREA) which used a precedence-
based correction for each category individually as follows: 

1) Apply k-means with k=4 (i.e., Pause, Movement 
Artifact, Asynchrony and Quiet Breathing) and the 
inputs: ln(prc), ln(pab), mrc, mab. 

2) Correct the decision boundaries of the Pause cluster, 
identify the instances that belong to the corrected 
cluster and remove them from the working data set. 

3) Apply k-means with k=2 (i.e., Movement Artifact and 
Breathing [Quiet+Asynchronous]) and the inputs: 
ln(prc), ln(pab), mrc, mab. 

4) Correct the boundary of the Movement Artifact cluster, 
identify the instances that belong to the corrected 
cluster and remove them. 

5) Apply k-means with k=2 (i.e., Asynchrony and Quiet 
Breathing) and φ as input. 

6) Correct the boundary between Asynchrony and Quiet 
Breathing, identify the instances accordingly. 

This precedence was determined on the basis of our 
previous work [4] and an exploratory analysis performed to 
determine the optimal combination of inputs for each step. 
This revealed that mrc and mab distinguish well between 
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Fig. 1.  Illustration of the k-means input space showing the decision 
boundary correction for unbalanced sampling for k = 4 clusters. 
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Breathing (Asynchrony and Quiet Breathing) and Non-
breathing (Pause and Movement Artifact), while ln(prc) and 
ln(pab) ameliorate this separation while improving the 
separation of Pause from Movement Artifact. The 
asynchrony test statistic φ distinguishes between 
Asynchrony and Quiet Breathing. Table II shows suggested 
test statistic values for initial cluster centers, obtained from 
representative values of the four categories. 

IV. PERFORMANCE COMPARISON OF SUPERVISED AND 

UNSUPERVISED CLASSIFICATION 

We evaluated the performance of the methods in terms of 
the agreement between the manually scored state and that 
estimated automatically. This was measured on a sample-by-
sample basis using Fleiss’ kappa (κ) statistic for inter-rater 
reliability [8]. A value of κ=1 indicates perfect agreement, 
while κ=0 reflects the performance expected by chance. We 
computed the overall κ value, and also the category specific 
agreement for each class: Pause, Movement, Asynchrony 
and Quiet Breathing. We also evaluated the agreement 
between Breathing (i.e., Asynchrony and Quiet Breathing) 
and Non-breathing (i.e., Pause and Movement). 

Automated classification was performed on all 16 data 
sets using both the supervised and unsupervised (AUREA) 
methods (all data sets were classified to obtain a more 
accurate estimation of the respiratory state with AUREA). 
For AUREA we first used the five basic inputs ln(prc), 
ln(pab), mrc, mab and φ; and then evaluated the inclusion of 
ln(r+) to steps 1) and 3). The window length parameters 
were set to NP=51, NM=251, NA=251, NQ=6001 and 
NR=251.  

Table III demonstrates that that AUREA (case c) 
performed substantially better than the supervised method 
(case a), increasing the overall agreement by more than 
23%, and the agreement on each category by at least 20%. 
The improvement for Pause classification was even higher 
(46%). It is also evident that using ln(r+) as an additional 
input (case c) for AUREA provided better classification than 
the five basic inputs (case b); the most notable improvement 
was for the Movement Artifact (19%). 

V. DISCUSSION 

We have presented a novel completely automated 
unsupervised respiratory event classification method for RIP 
signals, and successfully applied it to data from infants 
recovering from surgery/anesthesia. Although the 
performance evaluation was limited to the agreement with a 
single expert, our method performed substantially better 
than our previously supervised procedure. For the specific 
case of Pause classification, the new method had a 
performance improvement of 46%. This is important for the 
study of POA, where Pause events are very relevant. The 
new method eliminates the shortcomings of human 
intervention and had very good overall agreement with an 

expert scorer (κ=0.68), contrasted to that observed between 
expert technologists in sleep laboratories (κ=0.31), for a 
respiratory index consisting on the total number of Pauses 
[3]. Moreover, the method can be implemented in real-time 
starting with a classification based on the population results 
and then adjusting adaptively as data are recorded for a 
subject. Finally, the new classification scheme makes it 
possible to use new test statistics without the need for 
additional manual scoring. Future work will exploit this 
capability to identify test statistics that improve the 
performance of respiratory state classification, and will aim 
to fully validate AUREA using a larger data set manually 
classified by several experts. 
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TABLE II 
TEST STATISTICS VALUES FOR K-MEANS INITIAL CLUSTER CENTERS 

Cluster ln(prc) ln(pab) mrc mab φ ln(r+) 

Pause ln(0.1) ln(0.1) 0 0 N/A ln(0.1) 
Movement 0 0 -1 -1 N/A 1 

Asynchrony 0 0 0 0 1 ln(0.1) 
Q. Breathing 0 0 1 1 0 ln(0.1) 

N/A= Not applicable. 

TABLE III 
AGREEMENT (κ) BETWEEN AUTOMATED AND EXPERT SCORER 

Case B-NB P M A Q O 

(a) 0.60 0.39 0.60 0.45 0.57 0.55 
(b) 0.65 0.54 0.61 0.56 0.64 0.61 
(c) 0.75 0.57 0.73 0.54 0.70 0.68 

B-NB = Breathing vs. Non-breathing, P = Pause, M = Movement, A = 
Asynchrony, Q = Quiet breathing, O = Overall. 

(a) Supervised method; (b) AUREA with inputs ln(prc), ln(pab), mrc, mab 
and φ; (c) AUREA with inputs ln(prc), ln(pab), mrc, mab, φ and ln(r+). 
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