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Abstract— A computational mutagenesis methodology 
founded upon a structure-dependent and knowledge-based 
four-body statistical potential is utilized in generating feature 
vectors that characterize over 8500 individual amino acid 
substitutions occurring in seven proteins, each mutant having 
been experimentally ascertained for its relative effect on native 
protein activity. The proteins are diverse with respect to host 
organism (viral, bacterial, human) and function (enzymatic, 
nucleic acid binding, signaling), the structures span all four 
major SCOP classifications, and the mutations occur at 
positions well distributed throughout the seven structures. 
Implementation of the random forest algorithm, for classifying 
mutant activity as either unaffected or affected relative to the 
native protein, yields 84% accuracy based on tenfold cross-
validation. A freely available online server for obtaining 
predictions with the trained model, which also displays 84% 
accuracy on an independent test set of mutants, is available at 
http://proteins.gmu.edu/automute/AUTO-MUTE_Activity.html 

I. INTRODUCTION 

THROUGH the introduction of single residue replacements, 
protein engineering experiments aim to modify an 

existing property, such as level of activity or degree of 
structural stability [1]. These new proteins may be employed 
directly in commercial applications, or they may serve to 
guide further research on such topics as protein function, the 
protein folding process, and disease association studies. 
Given the time and cost constraints associated with 
exhaustive traversal of the protein mutational landscape, 
availability of reliable predictions from computational 
models assists in prioritizing experiments. Ideally, a model 
is trained using a uniformly distributed sample of amino acid 
substitutions drawn from the population, whose effects with 
respect to a particular property (e.g., activity or stability 
changes relative to the native proteins) are already known 
based on previously published experimental data. 

Each state-of-the-art predictive model of protein stability 
or functional change upon mutation described in the 
literature uniquely incorporates sequence, structure, and/or 
evolutionary information [2]. Recently, we implemented 
supervised classification and regression statistical machine 
learning techniques for developing accurate predictive 

models of relative stability changes upon mutation [3, 4]. 
Such models learn complex nonlinear functions based on 
training sets of mutants represented quantitatively as feature 
vectors that consist of components (i.e., input attributes or 
predictors of mutant effect) encoding information obtained 
from a computational mutagenesis technique we developed, 
with mutant relative stability change denoting the output 
attribute. Our in silico mutagenesis approach relies on a 
knowledge-based four-body statistical potential and utilizes 
Delaunay tessellation, a computational geometry tiling 
algorithm, to objectively identify quadruplets of neighboring 
residues in protein structures. For each single residue 
replacement in a protein, the procedure empirically 
quantifies environmental perturbations at the mutated 
residue position and at all tessellation-based structurally 
proximal positions that define its local neighborhood.  

Here we implement the random forest (RF) supervised 
classification algorithm [5] to develop a predictive model of 
relative activity changes upon mutation. The model is 
trained on 8561 protein mutants, 5251 unaffected (U) and 
3310 affected (A), retrieved from published data regarding 
the functional impact of introducing single residue 
substitutions into each of seven diverse proteins: HIV-1 
protease (PR) [6, 7] and reverse transcriptase (RT) [8], 
bacteriophage T4 lysozyme (lys) [9], bacteriophage f1 gene 
V protein (GVP) [10], the E. coli proteins barnase (barn) 
[11] and lac repressor (lac) [12], and human interleukin-3 
(IL-3) [13]. By generating mutant feature vectors in a 
manner identical to that outlined in the previous paragraph, 
our RF model achieves 84% accuracy as assessed both 
through tenfold cross-validation as well as by predictions on 
an independent test set of mutants. All datasets can be 
downloaded from http://proteins.gmu.edu/automute/AUTO-
MUTE_Activity_Details.html. 

II. MATERIALS AND METHODS 

A. Computational Mutagenesis 
An outline of the procedure is provided below, and 

additional details with illustrative figures are available from 
Masso and Vaisman [3, 4]. Given a set of points P = {x1, x2, 
x3, …, xN} in 3D Euclidean space corresponding to the Cα 
coordinates of all constituent amino acid residues in a 
protein structure, the Delaunay tessellation algorithm 
generates a convex hull of space-filling, non-overlapping, 
irregular tetrahedra whose combined vertices coincide with 
all the elements of P. Each tetrahedron objectively 
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identifies, through its four Cα vertices, a quadruplet of 
nearest neighbor residues in the protein; however, given that 
any two adjacent tetrahedral tiles in the tessellation may 
share a single vertex, a linear edge (two vertices in 
common), or a triangular face (three vertices in common), an 
amino acid in the protein generally participates in more than 
one such quadruplet of nearest neighbor residues. The local 
structural neighborhood of an amino acid consists of itself 
as well as all nearest neighbors defined by the residue 
quadruplets in which it participates (i.e., all residues with 
which the amino acid shares a tessellation edge). To ensure 
only biochemically feasible quadruplet interactions, all 
protein structure tessellations are modified by the removal of 
edges longer than 12 angstroms. 

A total of 8855 distinct unordered 4-letter subsets (i.e., 
permutations excluded) can be enumerated by selecting with 
replacement from the standard 20-letter protein alphabet. In 
order to reliably calculate the observed relative frequency of 
occurrence for each quadruplet in protein structure space, a 
diverse dataset of 1417 high-resolution proteins with low 
sequence and structure similarity is selected for tessellation 
from the Protein Data Bank (PDB) [14]. Next, a multinomial 
distribution is used to obtain the rate expected by chance for 
each quadruplet. By applying the inverse Boltzmann 
principle [15], a knowledge-based four-body statistical 
potential is generated by calculating the logarithm of the 
ratio of observed to expected rates (i.e., a log-likelihood 
score) for each quadruplet. 

Given the tessellation of any protein structure, the four-
body statistical potential equips every constituent tetrahedral 
simplex with a score equivalent to that of the quadruplet of 
residues identified at its four vertices. Consequently for each 
amino acid position in the protein, we calculate a residue 
environment score by adding together scores of all 
tetrahedra that share as a vertex the Cα coordinate of the 
amino acid. Altering the amino acid identity at a particular 
vertex in the tessellation changes the scores of precisely all 
those tetrahedra that share the vertex. In turn, changes to 
residue environment scores also occur, specifically at all 
amino acid positions forming the local structural 
neighborhood of the mutated position, and subtracting the 
original residue environment scores from the new ones at 
these positions yields their environmental change (EC) 
scores. In particular, the EC score at the mutated position 
itself is termed the residual score of a mutant, a scalar that 
empirically quantifies overall change to protein sequence-
structure compatibility upon mutation. 

B. Dataset and Feature Vectors 
For each of the seven proteins whose single residue 

replacements constitute our dataset, the respective numbers 
of mutants that experimentally display unaffected (U) and 
affected (A) activity levels relative to wild type are listed in 
Table I. Additionally, Table I provides PDB accession codes 
(structural coordinate files), SCOP structural classifications 

[16], and organism sources and biological functions of these 
proteins, which collectively reflect a well-distributed 
dataset. 

TABLE I 
DATASET CHARACTERISTICS 

Protein Source Function Mutant 
Data 

PDB 
Code 

SCOP 
Class 

PR HIV-1 proteinase U:   218 
A:   294 3phvA all β 

RT HIV-1 transferase U:   170 
A:   196 1rtjA α / β 

lys phage T4 hydrolase U: 1364 
A:   638 3lzmA α + β 

GVP phage f1 DNA binding 
(replication) 

U:   130 
A:   221 1gvpA all β 

barn E. coli RNase U:   643 
A:     34 1bniA α + β 

lac E. coli DNA binding 
(regulation) 

U: 2256 
A: 1773 1efaB all α 

IL-3 human signaling 
(growth factor) 

U:   395 
A:   229 1jliA all α 

 

Local structural neighborhoods are identified by 
tessellation of the protein structure and vary in size by 
residue position, yet each includes the mutated position 
along with no fewer than six nearest neighbors. For each 
single residue replacement in the dataset, the four-body 
statistical potential is used in conjunction with the 
computational mutagenesis technique from the previous 
section to calculate EC scores at the mutated position (i.e., 
the residual score) and at all of its local structural neighbors.  

With a focus on common attributes among all mutants, 
the following are encoded into each mutant feature vector 
[3]: identities of the native and replacement amino acids at 
the mutated position; residual score; EC scores at the six 
local neighborhood positions that are closest in Euclidean 
distance to the mutated position (lengths of tessellation 
edges between vertices), ordered by neighbor proximity to 
the mutated position; ordered residue identities at the six 
closest positions; ordered differences in primary sequence 
numbers between each of the six closest local neighbors and 
the mutated position; mean volume and mean tetrahedrality 
of all tetrahedral simplices in the tessellation that utilize the 
mutated position as a vertex; tessellation defined depth ( S, 
surface; U, undersurface; B, buried) at the mutated position; 
number of surface positions that share a tessellation edge 
with the mutated position; and secondary structure at the 
mutated position (H, helix; S, strand; T, turn; C, coil). 

C. Random Forest Classification and Model Performance 
We use the random forest (RF) algorithm as implemented 

in the Weka software [17]. Multiple bootstrap datasets are 
generated by the RF algorithm, each obtained by selecting 
mutants one at a time and with replacement from the original 
training set. The RF algorithm employs a technique referred 
to as bagging (bootstrap aggregating), whereby each 
bootstrap dataset is used to train an unpruned classification 
tree, and final mutant predictions are obtained from the 
ensemble of trees via majority vote [5]. Additionally, a small 
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fixed size subset of the feature vector components is 
randomly selected to split at every node encountered in each 
of the growing trees, where subset size is a function of 
feature vector length. These combined properties allow the 
RF algorithm to generally perform better than most other 
supervised classification methods, and regardless of the 
number of trees in the forest, the algorithm does not suffer 
from overfitting [5]. The RF parameter values we use in this 
study include a forest of 100 trees as well as subsets of 5 
random features selected for splitting at each tree node. 

The expected effectiveness of the RF model is primarily 
based on the evaluation and analysis of mutant predictions 
obtained via stratified tenfold cross-validation (10-fold CV) 
testing, though the trained RF model is also ultimately 
evaluated on an independent test set of mutants. Prediction 
performance is measured by computing the following 
quantities. Letting P and N respectively refer to the 
unaffected (U) and affected (A) classes of mutants, 

ACC = accuracy = (TP + TN) / (TP + FP + TN + FN), 
where TP (TN) refer to the number of correct U (A) mutant 
predictions and FN (FP) are the respective counts of 
misclassifications. Class-specific measures include S(U) = 
sensitivity = TP / (TP + FN) and P(U) = precision = TP / 
(TP + FP), with S(A) and P(A) analogously defined. We 
also calculate the following values: balanced error rate 
(BER) and balanced accuracy rate (BAR), calculated as 
BER = 0.5 × [FN / (FN + TP) + FP / (FP + TN)] and BAR = 
1 – BER; Matthews correlation coefficient, given by 

FP)  FN)(TN  FP)(TN  FN)(TP  (TP
FN  FP - TN  TP  MCC

++++
××

= ; 

and area (AUC) under the receiver operating characteristic 
(ROC) curve, a plot of true positive rate (sensitivity) versus 
false positive rate (1 – specificity). An AUC of 1.0 indicates 
a perfect classifier whereas 0.5 suggests random guessing. 

III. RESULTS AND DISCUSSION 

A. Structure-Function Relationships 
We begin by examining the computed residual scores of 

the 8561 mutants, values that empirically quantify overall 
structural changes upon single residue replacements. A 
mean residual score is calculated for each activity class and 
reflects a clear trend (Fig. 1, All category), whereby a 
greater detrimental effect to structure (i.e., more negative 
mean residual score) is associated with increased functional 
impairment (i.e., A/affected class). Moreover, a statistically 
significant difference exists between the mean residual 
scores of the two activity change classes (t-test, p < 0.0001). 
The mutants within each activity class of Fig. 1 are further 
categorized according to whether they represent 
conservative (C) or non-conservative (NC) replacements of 
the respective native residues [18], revealing that NC 
substitutions drive the overall trend. On the other hand, C 
substitutions by definition minimally impact protein 
structure regardless of effects on activity, a physicochemical 

trait of amino acids captured by mean residual scores of C 
substitutions in Fig. 1. 

TABLE II 
RF 10-FOLD CV PERFORMANCE MEASURES 

Data ACC S(U) P(U) S(A) P(A) BER MCC AUC
PR 0.83 0.74 0.83 0.89 0.82 0.18 0.64 0.89 
RT 0.73 0.72 0.71 0.74 0.75 0.27 0.46 0.78 
lys 0.82 0.88 0.87 0.71 0.73 0.21 0.59 0.89 
GVP 0.74 0.72 0.62 0.75 0.82 0.27 0.45 0.78 
barn 0.97 0.99 0.97 0.50 0.71 0.26 0.57 0.88 
lac 0.84 0.86 0.85 0.81 0.82 0.16 0.67 0.92 
IL-3 0.85 0.87 0.93 0.79 0.66 0.17 0.62 0.88 
ALL 0.84 0.89 0.85 0.76 0.81 0.18 0.65 0.91 
 

 
Fig. 1. Structure-function relationships. The residual scores of mutants 
elucidate a structure (mean residual score) – function (activity change) 
correlation  (C / NC = conservative / non-conservative residue substitutions). 

B. Random Forest Classification of Mutant Activity 
The 10-fold CV prediction results reported in Table II are 

based on the evaluation of protein-specific mutant subsets as 
well as the combined set of all 8561 mutants. To assess 
statistical significance, we calculate 10-fold CV 
performance on 1000 control datasets, each derived from the 
combined set by randomly shuffling the U/A class labels 
among the mutants. Based on MCC and BAR permutation 
distributions generated from the controls  (Fig. 2), the p-
value for predictive power of the RF model trained with the 
combined set is 0.001. Next, plots of learning curves are 
used to evaluate the influence of dataset size on model 
performance (Fig. 3). We start by applying 10-fold CV to 
each of ten stratified random samples of 1000 mutants, 
where each subset is selected independently from the 
combined set, and mean performance values are calculated; 
subsequent iterations increment by 1000 the sizes of the 
sampled datasets. All curves of Fig. 3 reach plateaus, 
suggesting more training data may not improve 
performance. Third, considering protein-specific mutant 
subsets, our prediction results (AUTO-MUTE) reported in 
Table II consistently outperform those of the related 
methods SIFT [19], MAPP [20], and Pmut [21] (Table III). 
Finally as a practical test, we used the RF model trained 
with the combined set to obtain predictions for a diverse 
collection of 248 single residue substitutions, retrieved from 
the Protein Mutant Database [22], with available 
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