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Abstract— Protein engineering experiments involving single 
amino acid substitutions are routinely implemented for the 
analysis of protein structure, stability, and function. The 
resulting change in just one of these characteristics relative to 
the native protein constitutes the focus of any single study, as is 
the case with predictive computational models developed for 
the same purpose. Other than investigations into stability-
activity trade-offs specifically resulting from active site residue 
replacements in a few enzymes, a literature survey fails to 
reveal a comprehensive analysis of stability-activity 
relationships in proteins upon mutation. Here, we employ a 
computational mutagenesis for quantifying overall protein 
structural change upon mutation, which is applied to a dataset 
of 938 single residue replacements distributed at positions 
throughout twenty diverse proteins. These mutants are selected 
based on the availability of both experimental stability and 
activity change data, and their structural change data are used 
to characterize the full range of stability-activity relationships. 

Fig. 1.  Elucidation of a distinctive structure (mean residual score) –
stability – activity relationship based on a subset of 121 experimental 
single residue replacements in the T4 lysozyme protein. 

I. INTRODUCTION 

MOTIVATED by recent work in developing a suite of 
models (http://proteins.gmu.edu/automute) to predict 

stability and activity changes in proteins upon single residue 
replacements [1-3], the aim of this study is to further 
understand stability-activity relationships by identifying 
mutants for which both properties have been experimentally 
investigated.  In our models, mutants are represented as 
feature vectors of data generated by a computational 
mutagenesis methodology that we developed; in particular 
the procedure yields a scalar, termed a mutant residual 
score, which empirically quantifies overall change in 
sequence-structure compatibility relative to the native 
protein upon mutation. A literature search reveals the 
existence of wide support for a “stability-function 
hypothesis” stating that active site mutations in enzymes 
increase stability at the cost of activity, a conjecture which is 
founded on intuitive physicochemical considerations as well 
as convincing experimental data from studies on specific 
proteins [4]. The inverse trade-off, decreased stability in 
favor of increased activity, remains more controversial due 
to a lack of consensus in the interpretation of the available 
data. Additionally, mutants for which stability and activity 

both either increase or decrease are generally considered 
anomalous, especially within the context of active sites, and 
they have even been excluded from further study [4, 5]. 
Here we investigate mutations distributed throughout 
enzymes as well as residue substitutions in other types of 
proteins (e.g., nucleic acid or receptor binding), in order to 
universally model how stability and activity co-vary upon 
mutation. 

To this end, we begin by considering single residue 
replacements in the lysozyme protein of bacteriophage T4, 
an enzyme with a polypeptide sequence consisting of 164 
amino acids. Rennell et al. [6] had published qualitative 
experimental activity change data for 2015 (65%) of these 
T4 lysozyme mutants, enabling mutants to be identified as 
either unaffected (U) or affected (A). We utilized the 
Rennell et al. data in a prior study by computing mutant 
residual scores and mean residual score (MRS) by mutant 
category (MRS(U) = –0.76, MRS(A) = –1.40), in order to 
report on the capability of MRS to elucidate a statistically 
significant structure (MRS) – function (U/A categories) 
relationship in T4 lysozyme (t-test, p < 0.001) [7]. Next, 
Saraboji et al. [8] had retrieved and analyzed a set of 171 
mutants of T4 lysozyme with experimental thermal stability 
change (∆Tm) values that were previously reported in the 
literature, 121 of which overlap with those of the Rennell et 
al. study. By classifying stability change as increasing (inc, 
∆Tm ≥ 0) or decreasing (dec, ∆Tm < 0), this common subset 
of 121 mutants populate all four stability-activity categories, 
whose mean residual scores exhibit a distinctive trend 
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warranting further investigation (Fig. 1). The fact that the 
two inc (dec) stability change mutant categories display 
positive (negative) MRS is a testament to the influence of 
sequence-structure compatibility on overall protein stability 
(MRS(inc) = 0.64, MRS(dec) = –0.87), revealing a 
statistically significant structure (MRS) – stability (inc/dec 
categories) relationship (t-test, p < 0.0005). Though a trend 
also exists between MRS and the U/A categories (MRS(U) 
= –0.48, MRS(A) = –0.66), it does not represent a 
statistically significant structure–function relationship as 
was the case with the Rennell et al. data, since 121 (4%) T4 
lysozyme mutants are too few to adequately represent the 
mutational landscape.  

Saraboji et al. retrieved their dataset of T4 lysozyme 
mutants from the ProTherm Database, a repository of 
published thermodynamic data for proteins and mutants [9]. 
This motivated our own search of the database to obtain a 
larger collection of single residue mutants from a variety of 
proteins, for which experimental stability and activity 
change data are available. Notably, ProTherm collects only 
quantitative mutant activity change data, reported as a 
percentage of wild type (WT) protein activity. Mutant 
stability change data include values of the free energy of 
unfolding based on thermal (∆∆G, 59 mutants) or 
denaturant (∆∆GH2O, 221 mutants) denaturations (Fig. 2(a)), 
each measured in kcal/mol, and the difference in midpoint 
temperatures of thermal unfolding (∆Tm, 251 mutants), 
reported as °C (Fig. 2(b)). Taking into account bias (e.g., 
active site mutations are a legitimate focus for many studies) 
and noise (e.g., multiple instances of the same mutant 
studied under a variety of temperature and/or pH conditions, 
with measurements that can vary widely) inherent in the 
data, the emerging trends suggest that stability changes of 
small magnitude often leave mutant activity unaffected (or 
enhanced), whereas larger increases or decreases in mutant 
stability generally coincide with affected activity (Fig. 2(c)). 
With the aid of residual scores as empirical measures of 
structural change upon mutation, the aim of this study is to 
provide a plausible rationale for this assertion.  

II. MATERIALS AND METHODS 

A. Mutant Residual Scores 
The residual score of a mutant is calculated using a 

structure-dependent and knowledge-based computational 
mutagenesis methodology whose details we previously 
reported elsewhere [2, 3]. We begin by representing every 
protein structure discretely as a collection of points in three-
dimensional space, with each point corresponding to the 
center-of-mass of the side chain atoms for a constituent 
amino acid residue. These points are used as vertices by the 
Delaunay tessellation algorithm, a computational geometry 
technique, for generating a tetrahedral tiling of the space 
occupied by the protein structure. Each tetrahedron 
objectively identifies at its four vertices a quadruplet of 

structurally nearest-neighbor residues in the protein; 
however, since the tessellation is space-filling and tiles pack 
against one another, each vertex is generally shared by 
multiple tetrahedra, meaning each residue may participate in 
a number of such nearest-neighbor quadruplets. To ensure 
biochemically feasible quadruplet interactions, every protein 
structure tessellation is initially modified by the removal of 
edges longer than 12 angstroms. 

Fig. 2.  Scatterplots of single residue replacements retrieved from the 
ProTherm Database for which published experimental data is available 
with respect to activity change as well as either (a) ∆∆G or ∆∆GH2O

stability change (kcal/mol) or (b) ∆Tm stability change (°C). Allowing for 
dataset bias and noise, the plots in (a) and (b) lead to the hypothesized 
generalization of stability-activity relationships shown in (c). 

Without regard to order (i.e., excluding permutations), 
there are 8855 possible quadruplets that can be generated 
from a 20-letter protein alphabet, and an average sized 
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protein yields only a few hundred quadruplets (i.e., 
tetrahedra). Thus, we tessellated a large, diverse set of 
protein structures in order to calculate for each quadruplet 
the observed relative frequency of occurrence; a rate 
expected by chance was then obtained from a multinomial 
reference distribution. A knowledge-based four-body 
statistical potential was generated by taking, for every 
quadruplet, the logarithm of the ratio of observed to 
expected rates (i.e., a log-likelihood score). Using this 
potential, every tetrahedron in the tessellation of a protein 
structure can be assigned a score based on the residue 
quadruplet represented at the four vertices. Since a vertex is 
generally shared by multiple tetrahedra, the sum of their 
scores is referred to as an environment score for the residue 
represented by the vertex. Changing the residue identity at 
this shared vertex alters the scores of those tetrahedra and 
leads to a new environment score at the vertex, and 
subtracting the old residue environment score from the new 
one yields the residual score for this single residue mutant. 

Fig. 3.  The same distinctive structure – stability – activity relationship as 
that of Fig. 1, based on 227 distinct single residue replacements in ten 
proteins with experimental data retrieved from the ProTherm Database. 

B. Mutant Datasets 
A search of the ProTherm Database yields a collection of 

mutants (531 total including repeats, 227 distinct), each with 
quantitative experimental stability and activity data, 
representing single residue substitutions in ten proteins that 
also have structural coordinate files in the Protein Data Bank 
(PDB) [10]: barnase (PDB ID: 1bniA), lambda repressor 
(1lrpA), ribonuclease H1 (2rn2A), chicken lysozyme 
(4lyzA), ribonuclease T1 (1rn1C), staphylococcal nuclease 
(1stnA), adenylate kinase (2akyA), citrate synthase (1ctsA), 
ribonuclease A (1rtbA), and phage T4 lysozyme (3lzmA).  

Our own literature search for published experimental data 
identified 711 additional mutants, representing distinct 
single residue substitutions in ten more proteins with PDB 
structural coordinate files, to produce a combined dataset of 
938 distinct mutants from 20 diverse proteins: ribonuclease 
H2 (1io2A) [11], gene V protein (1vqbA) [12], ribonuclease 
Sa (1rggA) [13], P-30 protein (Onconase) (1oncA) [14], 
HIV-1 reverse transcriptase (1rtjA) [15], HIV-1 protease 
(3phvA) [16], tryptophan synthase (1wbjA) [17], Fyn 
tyrosine kinase (1shfA) [18], AmpC beta-lactamase (1ke4B) 
[19], and interleukin-3 (1jliA) [20]. The dataset is available 
at http://proteins.gmu.edu/automute/stability-activity.txt. 

III. RESULTS AND DISCUSSION 
The initial dataset retrieved from the ProTherm Database, 

upon which the scatterplots of Figs. 2(a) and (b) are based, 
consists of 227 distinct mutants representing single residue 
replacements in ten proteins. We classify activity change 
values as either unaffected (U, ≥ 20% of WT) or affected 
(A, < 20% of WT), and stability change values (for all three 
experimental techniques) as either increased (inc, ≥ 0) or 
decreased (dec, < 0). A plot of the mean residual score 
(MRS) for each of these four mutant categories (Fig. 3) 
displays the same distinctive trend as that obtained for the 

121 T4 lysozyme mutants. A trend with respect to stability 
change (MRS(inc) = 0.93, MRS(dec) = –0.68) reflects a 
statistically significant structure (MRS) – stability (inc/dec 
categories) relationship (t-test, p < 0.0001); however, as in 
the case of the 121 T4 lysozyme mutants, a statistically 
significant structure (MRS) – function (U/A categories) 
relationship is not evident owing to the small dataset size. 

Next, the 711 distinct mutants from ten additional proteins 
that we retrieved from the literature are similarly classified 
and combined with the 227 ProTherm mutants, leading to a 
combined dataset of 938 distinct mutants with the following 
distribution: 279 U\inc, 421 U\dec, 94 A\inc, and 144 A\dec. 
Again, a plot of MRS calculated for each of the four mutant 
categories (Fig. 4(a)) mirrors those obtained earlier in Figs. 
1 and 3. Importantly, for each of the four pairs of categories 
in Fig. 4(a), a statistically significant difference exists 
between the pairwise MRS values (t-test, p < 0.01 for each 
pair). Furthermore, trends evident when independently 
considering stability change (Fig. 4(b)) and activity change 
(Fig. 4(c)) reflect a statistically significant structure (MRS) – 
stability (inc/dec categories) relationship (t-test, p < 0.0001) 
as well as a statistically significant structure (MRS) – 
function (U/A categories) relationship (t-test, p < 0.05), 
respectively. 

Third, the mutants comprising each category in Figs. 4(b) 
and (c) are further clustered based on whether they represent 
conservative or non-conservative replacements of the 
respective native residues [21], and MRS values are 
calculated for each of these mutant subgroups.. Note that the 
subset of non-conservative mutants drive the overall trends 
in Figs. 4(b) and (c), whereas conservative substitutions by 
definition minimally impact protein structure regardless of 
their effects on activity or stability, a trait effectively 
represented in the figures through MRS values of small 
magnitude for the conservative mutant subgroups. 

Finally, we hypothesize that the distinctive plots in Figs. 
1, 3, and 4(a) are a consequence of the following general 
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Fig. 4. (a) Recurrence of the structure – stability – activity relationship
based on a diverse set of 938 distinct single residue replacements in
twenty proteins. These mutants elucidate statistically significant (b)
structure – stability and (c) structure – function relationships (C / NC = 
conservative / non-conservative residue replacements). 
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