
  

  

Abstract—‘OMICS’ techniques have deeply changed the 
drug discovery process. The availability of many different 
potential druggable genes, generated by these new techniques, 
have exploited the complexity of new lead compounds 
screening. ‘Virtual screening’, based on the integration of 
different analytical tools on high performance hardware 
platforms, has speeded up the search for new chemical entities 
suitable for experimental validation. Docking is a key step in 
the screening process. The aim of this paper is the evaluation of 
binding differences due to solvation. We have compared two 
commonly used software, one of which takes into account 
solvation, on a set of small molecules (Morpholines, flavonoids 
and imidazoles) which are able to target the RAC1 protein - a 
cardiovascular target. We have evaluated the degree of 
agreement between the two different programs using a machine 
learning approach combined with statistical test. Our analysis, 
on a sample of small molecules, has pointed out that 35% of the 
molecules seem to be sensitive to solvation. This result, even 
though quite preliminary, stresses the need to combine 
different algorithms to obtain a more reliable filtered set of 
ligands.  

I. INTRODUCTION 

HE investigation of the molecular mechanism of the 
diseases (Molecular Medicine) is one of the major 
challenges in the post-genome era. From a 

pharmacological point of view the identification of genes, 
involved in a specific pathology, (markers) is an essential 
step. In addition, is it also important to elucidate the 
functional interactions among them. From a molecular point 
of view a disease is characterized by altered genomic and 
proteomic profiles [1]. Statistical analysis allows to 
determine the set of critical gene or proteins in a panel of 
samples. ‘Omics’ has heavily impacted the drug discovery 
process. The high throughput screening method, developed 
during the sequencing projects, has increased the capability 
to screen, in a parallel way, thousand potential targets. 
Despite the availability of all these new technologies, the 
productivity, as new potential drugs, of pharmaceutical 
companies is declined.  
The identification of new chemical compounds suitable for 
high throughput pharmacological screening has become 
computationally intensive. The chemoinformatic screening 
is also limited by data accessibility because many 
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compounds are under copyright and there not information 
about them. In the last decade the Computer Aided Drug 
Design (CADD) has increase its complexity including 
genetic information in the screening process 
(pharmacogenetics). In the past the role of genetic variability 
was not considered, now the effect of genetic variability on 
drug efficacy is a well-established knowledge. In many cases 
different proteins forms, associated to a slight variation at 
genomic level, can be targeted by a drug in a more or less 
efficient way.  On the other site a drug can induce 
differential gene expressions. The evaluation of genomic 
modification, triggered by drugs, is the aim of 
pharmacogenomics. It is quite obvious that, for virtual 
screening, pharmacogenetic knowledge has a critical 
influence. The identification of new drug targets requires the 
integration of bioinformatics and chemoinformatics with 
experimental results. These data are the knowledge 
background for the QSAR (Quantitative Structure-activity 
Relationship) modelling. At higher level the final step of the 
discovery process is related to the capability to evaluate the 
efficacy by the ADME (Adsorbtion Diffusion Metabolism 
and Excretion) simulation. In order to improve the 
performance of target identification and design of new 
drugs, bioinformatics and chemoinformatics tools have to be 
integrated.  
The use of data mining techniques related to gene expression 
level during FP6 Cardioworkbench project 
(www.cardioworkbench.eu) has highlighted the role of Rac1 
protein in cardiovascular diseases [2]. In particular Rac1 
protein is implicated in several events of atherosclerotic 
plaque development and represents a new potential 
pharmacological target for cardiovascular diseases. Rac1 is 
member of the Rho family. This protein family serve as 
conformational switches in a wide variety of signal 
transduction pathways. It is a key regulators of angiogenesis, 
modulating a diversity of cellular processes, including 
vascular permeability, extracellular matrix remodeling, 
migration, proliferation, morphogenesis, and survival [3]. 
Rac1 plays a central role in endothelial cell migration, 
tubulogenesis, adhesion, and permeability in response to 
vascular endothelial growth factor (VEGF) and sphingosine-
1-phosphate (S1P), which is likely due to the inability of 
Rac1-deficient endothelial cells to form lamellipodial 
structures and focal adhesions, and to remodel their cell-cell 
contacts [4]. It is been demonstrate that the activation of 
Rac1, but not RhoA, in human aortic smooth muscle cells 
(SMCs) through the engagement of 2 1 integrin by type I 
collagen induces the expression of matrix metalloproteinase 
1 (MMP1) and MMP2, an event that may contribute to 
atherosclerotic plaque rupture [2]. 
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Fig. 1. Workflow for the identification of solvation sensitive molecules 

 We propose a new method to identify a set of putative 
ligands that could be more sensitive to the water solvation 
effect due to the solvation forces based on the disagreement 
of the result of two classifiers. The contribution of solvation 
energy is critical for functional aspect of macromolecular 
interaction, for instance solvation is essential for enzyme 
kinetic or for drug metabolism.  
Solvation free energies in aqueous solution are important for 
structural and metabolic equilibria and kinetics. 
Unfavourable solvation free energies of associating nonpolar 
groups may lead to hydrophobic stabilization of their mutual 
complexes, although the electrostatic energy may not be so 
favourable. On the other hand, a favourable electrostatic 
energy does not always mean a high affinity, owing to the 
high solvation free energy penalty. Thus, the solvation free 

energy plays an important role in both protein-ligand 
association and protein folding [5]. 

II. METHOD 

In order to evidenciate the differences between two docking 
programs before their integration in a chemo-bioinformatic 
workflow, the use of different algorithms can help to refine a 
set of potential new lead compounds. Docking is one of the 
most commonly used techniques in Computer Aided Drug 
Design (CADD). Docking speed up the process of ligand 
selection. It allows to identify correct poses of a ligand in 
one specific region of a target protein. This approach is also 
used to estimate the strength of protein–ligand complexes. A 
massive screening of small molecules must be performed in 
order to obtain a reasonable small set of ligands suitable 
molecules for biological testing. A large variety of over 60 
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different docking programs with more of 30 scoring function 
have been proposed during the last two decades, for both 
commercial and academic use (DOCK [6], AutoDock [7], 
FlexX [8], Surflex [9], GOLD [10], ICM [11], Glide [12, 
13], Cdocker [14], LigandFit [15], MCDock [16] and many 
others). Different strategies in the ligand placement are 
being used in each program, but all programs can be 
categorized into four broad categories: stochastic Monte 
Carlo, fragment-based, evolutionary-based, and shape 
complementary methods. A systematic search of all degrees 
of freedom in the ligand molecule is not used by any of these 
programs because of the enormous computational cost [17]. 
Two complementary components are the basis for each 
docking program. One is a method to explore the 
conformational space of the ligand and/or the protein target. 
The other is a scoring function to evaluate the proposed 
poses. During the docking procedure a large number of 
poses is generated, therefore fast and reliable function is 
required in order to estimate the strength of the interaction 
between the protein and the ligand. The best score should be 
assigned to the ‘correct pose’ by a scoring function that 
evaluates the stability of the target-ligand complexes. 
The comparison of results obtained with different docking 
methods is difficult due to differences in docking algorithms 
and scoring functions procedures [18], so novel techniques 
(consensus scoring) have been applied [19] to integrate the 
information obtained using diverse software with the same 
targets and ligand libraries. In our analysis each docking 
algorithm acts as specialized sensor. We combined the two 
sensors in a data fusion system and compared the results 
from the two docking methods by application of a machine 
learning tool. Our analysis has been carried out on the PDB 
structure 2FJU. The sample set of ligands has been extract, 
taking the available information about inhibitors of RAC1 
into account, from Zinc database [20]. The data set 
comprises 1488 small molecules belonging to three 
categories of compounds (Morpholines, Flavonoids and 
Imidazoles) that seem to have a particular activity respect to 
Rac1 protein. Solvation plays a critical role in ligand-target 
interaction. Not all the scoring functions allow to evaluate 
the influence of solvation on binding affinity. In order to 
verify the effect of the solvation energy on Rac1-ligand 
interactions we introduce the workflow in Figure 1. We used 
two docking program with different scoring function, Dock 
6.2 and AutoDock 4. In particular with Dock 6.2 we do not 
take into account the solvation energy contribution, on the 
other hand we do it with Autodock4. This software embeds a 
semiempirical function to estimate solvation effect. This 
function is not the best available, but AutoDock is one of 
more common tools for docking [21]. Differences can 
depend on grid topology or selected scoring function. Dock 
6.2 does not consider the solvation estimation in the default 
binding affinity calculation. The user must select specific 
options to include solvation in the binding affinity 
computation. We have obtained the energy score for both the 
programs, we proceed with a data cleaning operation to 
remove the outliers that should give problems in the 
analysis. In this procedure the interquartile range (IQR) [22] 
methods has been used.  

After removal we have clustered the remaining data using a 
k-means algorithm. The obtained clusters have been 
validated with the Davies-Bouldin index (DBI), that is a 
metric for clustering algorithms evaluation [23]. DBI is 
expressed by the following equation: 
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Where S(Uk) and S(Ul) are the average distances between 
objects within clusters Uk and Ul respectively and d(Uk, Ul) a 
between-cluster distance. For each class of ligands, ranked 
by using both algorithm, we have obtained a different K 
value (data not show) resulting from optimization of DBI. 
After preliminary clustering we have selected, for each 
ligands class, the clusters that maximize the cardinality 
(CDock,CAutodock), and we have used them to generate a new 
set of compound by intersection (Fig.2). 

This new data set is used as training set for a classification 
process and it is composed by 221 small molecules and in 
particular 38 Morpholines, 51 Flavonoids and 132 
Imidazoles. This set is an unbalanced set because it reflects 
the query used to extract the ligand from the database. In 
fact we have intersected the sets for ‘Rac1’ and for each 
class of ligands. This situation has limited the bootstrap 
process. A small equally distributed set of ligands is too 
small for our purpose. Two Linear Discriminant Analysis 
(LDA) classifiers have been used to discriminate between 
the three classes of molecules using the obtained training set 
and 50 test set of about 30 molecules randomly selected 
from the whole set of molecules. The results of the two 
classification process have been used to assessing the 
reliability of agreement between the two classifiers using the 
Fleiss’ Kappa method [24]. The kappa, κ , can be defined as 
 
 

1
e

e

P P

P
κ

−
=

−

(2)

 

CCCCDockDockDockDock    

CCCCAutodockAutodockAutodockAutodock    

Common Common Common Common 

eeeelements lements lements lements for for for for 

trtrtrtraining setaining setaining setaining set    

Fig. 2. Intersection of clusters for training set construction 

3239



  

The factor 1 eP−  gives the degree of agreement that is 

attainable above chance, and eP P− , gives the degree of 

agreement actually achieved above chance. The measure 
calculates the degree of agreement in classification over that 
which would be expected by chance and is scored as a 
number between 0 and 1. 

III. RESULTS AND DISCUSSION 

The work presented here used the data from two docking 
algorithms and especially one that considers the presence of 
solvation in the protein ligand interaction and another that 
does not. The purpose of this work was to identify a possible 
method to identify the possible difference in behaviour of 
the small molecules considered in relation to the relationship 
with the target RAC1. Applying the Fleiss’ Kappa method 
we have obtained a substantial agreement between the two 
classifiers with a value of 0.6545. In the light of this result 
seems that about 35% of the considered small molecules are 
subjected to solvation effect. This set of molecules has been 
designed as test set for more refined MM analysis in order to 
estimate how chemical features of these ligands affects the 
interaction with specific residues of Rac1. Our analysis has 
been mainly focused to mine new chemical entities suitable 
for more refined computational analysis. Our resulting set of 
new molecules, influenced by solvation, is suitable for 
subsequent QSAR analysis taking this factor into account. 
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