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Abstract — In this paper, a novel algorithm is proposed with 
application in sleep/awake detection and in multiclass sleep 
stage classification (awake, non rapid eye movement (NREM) 
sleep and REM sleep). In turn, NREM is further divided into 
three stages denoted here by S1, S2, and S3. Six 
electroencephalographic (EEG) and two electro-oculographic 
(EOG) channels were used in this study. The maximum overlap 
discrete wavelet transform (MODWT) with the multi-
resolution Analysis   is applied to extract relevant features from 
EEG and EOG signals. The extracted feature set is 
transformed and normalized to reduce the effect of extreme 
values of features. A set of significant features are selected by 
mRMR which is a powerful feature selection method. Finally 
the selected feature set is classified using support vector 
machines (SVMs). The system achieved 95.0% of average 
accuracy for sleep/awake detection. As concerns the multiclass 
case, the average accuracy of sleep stages classification was 
93.0%.  

I. INTRODUCTION 

he study of sleep pattern through whole night sleep 
recordings has consistently been an important research 

topic. Scoring of sleep stages was done on the basis of 
Rechtschaffen and Kales standard (R&K) until recent dates 
[1]. The American Academy of Sleep Medicine (AASM) 
determined new criteria in the scoring of sleep based on the 
R&K rules. Sleep-wake cycle is categorized in awake, non 
rapid eye movement (NREM) and rapid eye movement 
(REM) sleep stages. NREM sleep is further divided into 
three stages: S1, S2 and S3 [2]. Sleep scoring by experts is a 
very time consuming task and normally may require hours to 
classify a whole night recording. It is also a somewhat 
subjective procedure in which the concordance between 
human experts can vary greatly [3]. Accordingly, the 
development of automatic systems is highly desirable to 
save time and improve agreement levels of sleep stage 
scoring. Several studies have reported the development of 
automatic sleep stage classification (ASSC) methods based 
on electroencephalographics (EEG) records, sometimes in 
combination with electro-oculogram (EOG) and 
electromyogram (EMG) records. Hilbert-Huang Transform 
and Wavelet Transform were applied to extract harmonic 
parameters from EEG signals in [4]. Ebrahimi et al. [5] used 
neural networks and wavelet packet coefficients to 
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discriminate between different sleep stages. Doroshenkov et 
al. [6] have developed a classification algorithm based on 
Hidden Markov Models using only EEG signals, achieving 
the best accuracy result for REM stage. Zoubek et al. [7] 
suggested feature selection algorithms to find the most 
relevant features from polysomnography (PSG) signals. In 
another work, Gunes et al. [8] proposed a K-means 
clustering method with a reported agreement of 55.88% to 
82.15% in discriminating six sleep stages. Jo et al. [9] 
proposed a genetic fuzzy classifier applied to discriminate 
four stages:  wakefulness, shallow sleep, deep sleep, and 
REM stages. Values of classification accuracy vary widely 
among ASSC methods reported in scientific publications. 
Rigorous comparisons between the reported systems cannot 
be done since they differ in recording conditions and 
validation procedures. 

An ASSC algorithm has been developed aiming to 
improve sleep stage classification accuracy in two 
applications: sleep/awake detection and multiclass sleep 
stage classification. In both cases the classification is based 
on six EEG and two EOG channels by using temporal, 
parametric and time-frequency features. The maximal 
overlap discrete wavelet transform (MODWT) uses a multi-
resolution analysis (MRA) to decompose EEG and EOG 
signals at different resolutions. A support vector machine 
(SVM) classifies transformed and normalized features that 
are selected by a minimum-redundancy maximum-relevance 
(mRMR) algorithm [10].  Furthermore, a median filter is 
used to enhance the classification accuracies.  

II. MATERIALS AND METHODOLOGY 

The proposed system can be organized in various 
interoperating parts as illustrated in Fig. 1. 

A. Data Acquisition 

Data from all-night PSG records, each with a duration 
around 8 hours (acquired by a SomnoStar Pro; Viasys 
SensorMedics), were provided by the Laboratory of Sleep 
from Hospital Centre of Coimbra. All EEG and EOG 
recordings were performed with a sampling rate of 200 Hz. 
The dataset comprises data from fourteen subjects, ten males 
and four females with ages between 22 and 79 years old 
(mean = 56 years; std = 17.11 years). The international 10-
20 standard electrode placement system was used for EEG 
recording. Six EEG and two EOG channels were used in our 
evaluation: F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, O2-A1, 
right EOG (R-EOG)-A1 and left EOG (L-EOG)-A2 for all 
the subjects. 
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B. Preprocessing and Feature Extraction 

Before computing the feature vectors from the sampled 
EEG signals, the recorded signals are filtered to eliminate 
noise and undesired background EEG, by using a notch filter 
at 50 Hz and a bandpass Butterworth filter with lower cutoff 
of 0.5 Hz and higher cutoff of 45 Hz. The signals were 
segmented in 30 seconds epochs. EEG is traditionally 
analyzed in the frequency domain, since each sleep stage is 
characterized by a specific pattern of frequency contents. 
However further useful information can be extracted from 
temporal analysis of EOG and EEG signals. Moreover, EEG 
signals are non-stationary; therefore time-frequency 
transformations like wavelets are very useful. Thus, after 
preprocessing, some features are extracted using several 
methods in the time-frequency, temporal and frequency 
domain. 

1) Wavelet Based Features 
The discrete wavelet transform (DWT) generates 

coefficients that are local in both time and frequency. The 
maximum overlap discrete wavelet transform (MODWT) 
[11] is a DWT in which the operation of subsampling from 
an output filter is omitted. By giving up of the orthogonality 
property, the MODWT gained new features; although losing 
efficiency in computation, this transform does not have any 
restriction on the sample size and it is shift invariant. As a 
result, in the MODWT, the wavelet and scaling 
coefficients must be rescaled to retain the variance 
preserving property of the DWT. Although the components 
of MODWT are not mutually orthogonal, their sum is equal 
to the original time series. Additionally, the detail and 
smooth coefficients of a MODWT are associated with 
zero phase filters. This means that temporal events and 
patterns in the original signal are meaningfully aligned 
with the features in the multi resolution analysis. 
Furthermore, the MODWT is invariant to circularly 
shifting the original time series. Hence, shifting the time 
series by an integer unit will shift the wavelet and scaling 
coefficients by the same amount. This property does not 
hold for the DWT because of the subsampling involved in 
the filtering process. In addition, the MODWT does not 
induce the phase shifts within the component series. The 
MODWT wavelet variance estimator is also preferred 
because it has been shown to be asymptotically more 
efficient than an estimator based on the DWT [12]. 

In our study a MODWT of depth 6 with Daubechies order 
four (db4) is applied to every 30 second epochs with a 
sampling rate of 200 Hz. The frequency ranges are broken 
down within δ range (<4 Hz), θ range (4–8 Hz), α range (8–
13 Hz) and β range (13–30 Hz). A set of statistical wavelet 
based features (see Fig.1) are extracted to represent the 
time–frequency distribution of the EEG and EOG signals. 

2) Frequency and Temporal Features 
Regarding the importance of spectral and temporal 

analysis, some features are extracted as suggested in [4], [7], 
[13], [14], [15]. These features are discussed in the 
experimental results section. 

C. Feature Transformation and Normalization 

The extracted features are transformed and normalized in 
order to reduce the influence of extreme values. The 
transformation methods applied to each feature are described 
in [16]. It was verified that some of those transformations 
improved the classification results. After a thorough 
experimental evaluation of each transform operator over 
extracted features, it was empirically verified that the best 
classification results were attained with the transform ࢄ = logሺࢅሻ, where Y denotes the feature matrix, and ࢄ = ൛ݔ; ݅ = 1,2, … , ܰand ݆ = 1,2, … ,  ൟ (where N and Mܯ
denote the number of subjects and the number of features 
respectively) is the transformed feature matrix. Thereby this 
transform was adopted in the overall sleep staging system. 
To avoid features in greater numeric ranges dominating 
those in smaller numeric ranges, and  numerical difficulties 
during the classification; in the selection process, each 
feature of the transformed matrix  ࢄ is independently 
normalized to the [0, 1] range by applying   ̅ݔ = ݔ ሺ݉ܽݔሺ࢞ሻ − ݉݅݊ሺ࢞ሻሻ⁄                        (1) 
 
where xi is a vector of each independent feature [17]. Effects 
of transformation and normalization on the classification 
process are discussed in the experimental results section. 

D. Feature Selection, Classification and Post processing 

Larger numbers of high-dimensional feature vectors make 
the classification process, more complex and less reliable 
due to feature’s redundancy. So there is the need of reducing  
the number of features which can be effectively done by 
mRMR feature selection method [18]. Our experimental 
results lead us to the same conclusion. In our study, SVM
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TABLE I 

SELECTED FEATURES USING mRMR. ALL FEATURES ARE EXTRACTED 

FROM 6 EEG AND 2 EOG CHANNELS EXCEPT THE PEAK TO PEAK 

AMPLITUDE THAT WAS EXTRACTED ONLY FROM THE EOG CHANNELS. 
Feature Extraction 

Methods 
Selected 
/ Total 

Feature Extraction 
Methods 

Selected
/ Total

Wavelet based features [7] 47/160 Skewness [7] 2/8 
Harmonic parameters [4] 39/120 Percentile25,50,75 [7] 1/24 
Relative power [7] 32/40 Kurtosis [7] 0/8 
Spectral analysis [13] 26/104 Rényi entropy [15] 0/8 
Hjorth parameters [14] 14/24 Tsallis entropy [15] 0/8 
AR coefficients [15] 10/48 Peak to peak amplitude [21] 0/2 
Shannon entropy [15] 5/8   
 

Fig.2 Proportion of selected features of each channel (EEG and EOG) 
in a total of 176 selected features. 

 [19] were adopted to handle the classification process. In 
general, when input data is too noisy, SVM shows reliable 
classification results. Moreover, an SVM can provide a good 
generalization performance for classification problems 
despite that it does not incorporate the problem-domain 
knowledge. In order to eliminate non stationary short-term 
transients, a postprocessing stage by means of a median 
filter is applied as described in [6]. 

III. EXPERIMENTAL RESULTS AND DISCUSSION 

The performance of the proposed algorithm was assessed 
using the fourteen subjects dataset mentioned in section II.A. 
In our experiments, a fourth order Daubechies with 
MODWT decomposition was adopted. Libsvm toolbox [20] 
with sigmoid kernel was used in the classification phase. 
The sigmoid degree and C parameters were set to 0.13 and 
1.25 respectively, as they produced the best empirical 
results. The classification accuracy was determined by using 
Leave-One subject-Out Cross-validation (LOOCV). 

The extracted feature sets and corresponding selected 
features, using mRMR method, are presented in Table I. The 
methods that were applied to extract features from the spatial 
and frequency domains are also shown in Table I. A total of 
570 (71 per EEG channel plus 72 per EOG channel) features 
were extracted for each subject. The transformed and 
normalized feature matrix is fed into the feature selector. 
The total number of selected features by mRMR method was 
176, which has provided the best average accuracy when 
applying a grid search. As illustrated in Table I most 
relevant features are extracted from MODWT 
decomposition (47 selected features) and Harmonic 
parameters (39), and the least effective ones are Kurtosis, 
Rényi and Tsallis entropies and Peak to Peak amplitude. 

 

Fig.3 ROC curves corresponding to (1) without any transformation 
and any normalization; (2) without transformation but applying 
normalization ̅ݔ = ݔ ሺ݉ܽݔሺݔሻ − ݉݅݊ሺݔሻሻ⁄ ; (3) with different 
normalization methods over the transformed features by log(x). 
  

TABLE II 
AGREEMENT EPOCH MATRIX OBTAINED WITH THE AUTOMATIC SLEEP

STAGE CLASSIFICATION USING THE SELECTED SET OF FEATURES 
 Visual scoring 

 Stages Awake S1 S2 S3 REM

 Awake 2974 152 1 21 104 

 S1 182 695 218 3 139 
Auto 

scoring
S2 9 347 3081 332 82 

 S3 0 0 254 2115 15 
 REM 48 117 27 0 844 

According to the AASM visual scoring rules, the frontal 
electrodes are the best for detecting K-complexes, central 
electrodes for detecting sleep spindles and occipital 
electrodes for alpha waves [2]. Considering the total features 
for each EEG channel (71 features) and for each EOG 
channel (72 features), we found that the most discriminative 
channels were C3, C4 and O2, as shown in Fig.2. 

Receiver operating characteristic (ROC) curves in Fig.3 
show the effectiveness of applying different normalization 
methods on extracted features. As it is shown, the 
performance of the system improved when normalization (1) 
was applied over all features. 

Table II gives a detailed comparison between automatic 
and visual scoring. The number of false positives (FP) was 
the highest in classification of S2 followed by S1 and stage 
awake. The maximum incidence of false negatives (FN) was 
in S1, followed by S2 and S3. On the other hand, the number 
of true positives (TP) was the highest in S2, and the number 
of true negatives (TN) was the highest in REM stage due to 
the smaller number of epochs in this stage. 

In Table III, the results of statistical analysis of our ASSC 
are presented, namely sensitivity, specificity, accuracy and 
the confidence interval (CI). The results were obtained stage 
by stage based on the values of Table II. The best sensitivity  
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TABLE III 
 STATISTIC ANALYSIS RESULTS OF MULTICLASS CLASSIFICATION 

                                   Stages  

Awake S1 S2 S3 REM Total CI (95%)

Sensitivity 92.561 53.013 86.037 85.593 71.284 77.698 12.416 
Specificity 96.747 94.813 90.586 97.104 98.185 95.487 2.351

Accuracy 95.604 90.153 89.201 94.685 95.476 93.024   2.425 
 

 
TABLE IV 

AGREEMENT EPOCH MATRIX OBTAINED WITH THE AUTOMATIC AWAKE 

VERSUS SLEEP CLASSIFICATION USING THE OPTIMAL SET OF FEATURES 

 
 

Auto 
scoring 

Visual scoring 

Stages Awake Sleep 

Awake 2857 233 

Sleep 356 8314 
 

value corresponds to stage awake, which means that our 
algorithm has a good ability to detect the awake stage. S1 in 
most of the cases is misclassified as S2, awake and REM, 
which leads S1 to attain the lowest sensitivity (53%). 
Specificity has the highest and lowest values for REM and 
S2 stages respectively. The mean accuracy of sleep stages 
classification is 93.024% with Cohen’s Kappa (k) of 0.815.  

Our algorithm shows better performance in subjects with 
a large number of awake epochs, because the classification 
results are biased by this stage. The classifier fails to 
discriminate the stages that show similar neurophysiological 
features. For instance, stage awake and S1 have both alpha 
rhythms; stages S1 and S2 have a common frontal 
prominence of beta and slow rolling eye movements; stages 
S2 and S3 frequently show the same delta activity.  

Considering only sleep/awake classification, the achieved 
accuracy was 94.99% ± 7.119 (k = 0.872), as computed from 
Table IV. For five of the subjects the accuracy was above 
97%, which is a high value even when considering manual 
scoring agreement between experts.  

IV. CONCLUSION AND FUTURE WORK 

Several feature extraction methods have been applied 
and combined with an SVM classifier. Features with higher 
positive impact in classification accuracy were the MODWT 
decomposition and harmonic parameters, associated with 
central and occipital areas. Transformation and 
normalization in the feature domain played an important role 
in the remarkably improvement of classification accuracy. 

 The multiclass classification based on LOOCV reached 
an average accuracy of 93.02%. The classification fails 
mainly on stages S1 and S2 because of their similarities. 
This issue can be improved by applying some heuristic rules 
in the classification algorithms. In sleep/awake detection it 
was achieved an average accuracy of 95% (agreement with 
expert visual scoring). To a more robust performance 
assessment, the classification algorithm has to be validated 
in a larger database. As a future work it will be pursued the 
integration of heuristic rules in the ASSC. 
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