
 
 

 

 

Abstract—Pulmonary crackles are used as indicators for the 
diagnosis of different pulmonary disorders.  Crackles are very 
common adventitious sounds which have transient characteristic. 
From the characteristics of crackles such as timing and number 
of occurrences, the type and the severity of the pulmonary 
diseases can be obtained. In this study, a novel method is 
proposed for crackle detection. In this method, various feature 
sets are extracted using time-frequency and time-scale analysis. 
The extracted feature sets are fed into support vector machines 
both individually and as an ensemble of networks. Besides, as a 
preprocessing stage in order to improve the success of the model, 
frequency bands containing no-information are removed using 
dual tree complex wavelet transform, which is a shift invariant 
transform with limited redundancy and an improved version of  
discrete wavelet transform. The comparative results of individual 
feature sets and ensemble of sets with pre-processed and non pre-
processed data are proposed. 

I. INTRODUCTION 
HEST auscultation of pulmonary sounds via a stethoscope 
is a widely used, inexpensive and noninvasive method for 

the evaluation of the respiratory disorders. However it is 
considered to be an inadequate diagnostic method due to its 
inherent subjectivity and limited frequency response of the 
stethoscope (the stethoscope attenuates frequencies above 120 
Hz). In recent years, the analysis of pulmonary sound signals 
with computers has become an established research area with 
the improvements in digital recording systems and advanced 
digital signal processing techniques [1-3]. 

Although the exact mechanism is still unknown, the 
pulmonary sounds are assumed to be produced due to air 
turbulence in the airways of the lungs. Pulmonary sounds can 
be studied in two classes, vesicular sounds and adventitious 
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sounds. Vesicular sounds are the respiratory sounds heard over 
the chest wall and are synchronous with air flow in the 
airways. Adventitious sounds, on the other hand, are additional 
sounds which usually occur with respiratory disorders [4]. 

Crackles are discontinuous, adventitious non-musical 
respiratory sounds which are attributed to sudden bursts of air 
within bronchioles. Their duration is less than 20 ms and their 
frequency range is between 100 to 2000 Hz. Crackles occur in 
pathological conditions and are superimposed on vesicular 
sounds. Crackles are explosive and transient in character, and 
occur frequently in respiratory diseases. The characteristics of 
pulmonary crackles such as timing, epochs of occurrence, and 
pitch can be used in the diagnosis for various types of 
pulmonary diseases such as pneumonia, bronchiectasis, 
fibrosing alveolitis and asbestosis [5-8]. 

For a computerized analysis of pulmonary diseases, proper 
detection of crackles is very important. In this study, a novel 
method is proposed for pulmonary crackle detection. For the 
analysis, a pulmonary dataset consisting of 3000 256-point 
crackle signals and 3000 256-point non-crackle (healthy) 
signals, are used. By applying time-frequency (TF) and time-
scale (TS) analysis to these 6000 signals, four different feature 
subsets are obtained and the original signals are used as the 
fifth feature subset. The extracted feature subsets are fed into 
support vector machines (SVM) classifier as inputs both 
individually and as an ensemble of networks. Besides, in order 
to improve the generalization and crackle detection capability 
of the model, frequency components of processed signals 
containing no-information (below 100 Hz and above 2000Hz) 
are removed using dual tree complex wavelet transform 
(DTCWT), which is an improved version of  discrete wavelet 
transform (DWT) with better shift invariance property, as a 
pre-processing stage. The comparative results of individual 
and ensemble feature sets with pre-processed and non pre-
processed data using SVMs are presented. 

II. MATERIALS AND METHODS 

A. Data Acquisition System 
In the data acquisition system fourteen air-coupled electret 

microphones (Sony-ECM 44) are placed on the posterior chest, 
and airflow is recorded using Fleisch-type flowmeter 
(Validyne CD379) to synchronize on the inspiration-expiration 
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phases. A low-noise preamplifier, 8th order Butterworth low-
pass filters with 4 kHz cut-off frequency and 6th order Bessel 
high-pass filters with 80 Hz cut-off frequency are used in order 
to minimize frictional noise and heart sound interference and 
for an anti-aliasing filter. The amplified signals are digitized 
by a 12-bit ADC Card (NIDAQ500) at a 9.15 kHz sampling 
rate and stored [9]. The details of the system are described in 
[10]. A sample of a lung signal containing crackles and a time 
expanded part of that signal containing two crackles are shown 
in Figure 1. 

B. Feature Extraction 
The spectral characteristics of lung sounds show different 

behaviors according to the state and pathology of the lung. The 
pathological sounds appear in higher frequency bands, i.e. as 
crackles which are explosive and transient in time. The 
frequency characteristic of crackles is used for the feature 
extraction part of the proposed method using TF and TS 
analysis.  

The signals collected from 26 subjects (13 healthy, 13 
pathological) are divided into 6000 samples, 3000 non-crackle, 
i.e. healthy, and 3000 crackle, each consisting of 256-point. In 
the preparation of crackle samples, 3000 crackles which were 
identified previously by physicians are randomly placed into 
256 point windows. The window size is chosen as 256 points 
because the duration of crackles is less than 20 ms and due to 
sampling frequency of the data acquisition system, which is 
9150 Hz, 256 points sized window is equal to 26.9 ms. In the 
preparation of healthy signals, 3000 256-point windows were 
randomly created from healthy subjects. In Figure 2, an 
example consisting of two 256-point crackle windows and two 
healthy windows can be seen. 

In order to use frequency characteristics of crackles, TF and 
TS analysis are applied to both crackle windows and healthy 
windows. For the TF and TS analyses, 64 points complex 
Fourier transform with Gaussian window and 64 scales 
complex wavelet transform with Morlet wavelet are used, 
respectively. 

The output of TF analysis gives the information about 
behavior of analyzed signals depending on both time and 
frequency. Then as a first feature set, the outputs of TF 
analysis are integrated over frequency, and so the behavior of 
signal upon time is obtained. As a second feature set, the 
outputs of TF analysis are integrated over time, and the 
behavior of signal upon frequency is obtained. Same procedure 
was also carried out for TS analysis. As the third and fourth 
feature sets, the outputs of TS analysis are integrated over 
scale and time, and the behaviors of signal upon time and 
scale, respectively, are obtained. The original signals are used 
as the fifth feature set. 

Vesicular sounds have the frequency components between 
0-200 Hz and crackles have the frequency components 

between 150 - 2000 Hz. In order to improve the performance 
of the proposed method, a preprocessing step which removes 
the frequency components having no crackle information, is 
applied to the dataset before extracting the feature sets. For 
this task, a five level DTCWT is applied on both crackle and 
healthy signals. The DTCWT is developed to overcome the 
lack of shift invariance property of ordinary discrete wavelet 
transform (DWT). Moreover it has limited redundancy (2m:1 
for m dimensional signals, which is a very good ratio as 
compared with undecimated DWT). In the analysis of non-
stationary crackles, which are transient signals, DTCWT 
removes undesirable signal components more successfully 
than DWT because of its shift invariance property. With 
DTCWT the frequency bands below 150 Hz and above 2400 
Hz are replaced with null vectors and then the processed signal 
is reconstructed. The details of DTCWT can be seen in [11-
13]. 

C. Individual Learning with Feature Sets 
We used LIBSVM [14] implementation of Support Vector 

Machines (SVMs) [15] as the classifier. The aim of the 
classifier is to build a predictive model capable of 
distinguishing between the crackle and non-crackle, i.e. 
'healthy', signals. For this purpose, we divided the dataset into 
three groups with equal number of samples: 2000 samples for 
train, 2000 for validation, and 2000 for test. The distribution of 
the samples to the datasets has been done such that each set 
contains 1000 samples from each class type.  

We trained each feature subset using training set and tested 
on validation set in order to find the most suitable kernel type 
among linear, polynomial and Gaussian. The SVMs parameter 
values, C (cost) and g (the spread parameter), are also 
optimized for each of the feature set. The optimized models 
are finally tested on the yet unseen test sets, and the unbiased 
success of each feature set is proposed. 

D. Ensemble of the Feature Sets 
We used the ensemble of the feature sets in order to 

improve the overall accuracy and generalization capability of 
the constructed model based on the proof of Hansen and 
Salamon [16]: if each member of the ensemble, i.e. feature 
subset, can get the right answer more than half the time, and if 
the responses of members are independent, the likelihood of an 
error by a majority voting strategy will monotonically decrease 
with the increasing number of members. Learning from 
multiple sets of features, called ensemble learning, is based on 
employing separate classifiers on each feature subset and 
combining the predictions of the views using techniques such 
as voting and stacking [17]. We trained each of the four 
extracted feature sets and also the original signals on the 
training set, then applied the optimized model of each feature 
set on the test set, and combined the class posterior probability 
estimates using simple voting (Algorithm 1). 
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Fig. 1. A sample of a lung signal, a) containing crackles, and b) a time expanded part of it containing two crackles 

 

 
Fig. 2. Examples of 256-point windows containing crackles (a, b) and healthy signals (c, d).

III. RESULTS 
The results of optimized models on test set of each 

individual feature set and ensemble of sets are shown in Table 
1. It is seen that the highest overall accuracy with 97.20% is 
obtained with our proposed method where a DTCWT is 
applied as a preprocessing step on each feature set, and the 
features sets are used as an ensemble of networks. True 
positive (TP) rate of the ensemble is also the second highest 
with 96.80 which shows that our ensemble method is 
successful at detecting the crackle signals. Although the 
highest TP rate, 97.10%, is obtained using TF analysis upon 

frequency, its true negative (TN) rate shows that it is not as 
successful as the ensemble of sets at recognizing the healthy 
signals. As we also see in Table 1, removing the frequency  
parts (i.e. noise) containing no- crackle information of 
processed signals using DTCWT enhances the overall 
accuracy of four of the five feature sets.  

The results show that the highest overall accuracy with 
96.35% among individual feature sets is obtained using 
DTCWT and TF analysis upon time feature extraction. TF 
analysis upon frequency without preprocessing is the next 
most successful feature extraction technique with 95.50% 
accuracy. Although the TN rate of the model that uses original 
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signals is the highest among all networks, its TP rate and 
overall accuracy is the worst which shows that both TF and 
time TS feature extraction techniques improve the success of 
the model by increasing the TP rate, i.e. the crackle detection 
capability. 
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IV. CONCLUSIONS AND FUTURE WORKS 
The analysis of pulmonary sound signals with computers is 

a recent research area due to the improvements in digital 
recording systems and advanced digital signal processing 
techniques. In this study, we propose a crackle detection 
method in which we use DTCWT as a pre-processing step for 
removing the frequency bands containing no-information, then 
extract various feature sets using TF and TS analysis, feed 
these feature sets to SVMs, and combine their class posterior 
probability estimates for final predictions as an ensemble of 
networks. We conclude that using DTCWT as a preprocessing 
step, extracting features instead of using the original signals, 
and combining the feature sets as an ensemble improve the 
crackle detection capability of the model.  

In the future, effect of windowing on the TF analysis and 
effect of mother wavelet function on the TS analysis of 
crackles will be investigated. It is also a challenge to 
implement the proposed method in real time as an online 
crackle detection system. 
 

 
Table 1. Accuracies, true positive (TP), and true negative (TN) rates of the individual feature sets and their ensembles 

Preprocessing - (no preprocessing) DTCWT 

Feature Set   TP (%) TN (%) Overall (%) TP (%) TN (%) Overall (%) 

Time Freq. Analysis Upon Time 87.20 96.40 91.80 96.70 96.00 96.35 

Time Freq. Analysis Upon Freq. 97.10 93.90 95.50 95.40 93.80 94.60 

Time Scale Analysis Upon Time 93.20 95.70 94.45 94.50 95.60 95.05 

Time Scale Analysis Upon Scale 92.00 88.60 90.30 89.30 94.90 92.10 

Original Signals 65.70 96.30 81.00 69.20 97.80 83.50 

Ensemble of Sets 94.50 98.30 96.40 96.80 97.60 97.20 
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