
  

 

Abstract—A new suction detection algorithm for rotary Left 

Ventricular Assist Devices (LVAD) is presented. The algorithm 

is based on a Lagrangian Support Vector Machine (LSVM) 

model. Six suction indices are derived from the LVAD pump 

flow signal and form the inputs to the LSVM classifier. The 

LSVM classifier is trained and tested to classify pump flow 

patterns into three states: No Suction, Approaching Suction, 

and Suction. The proposed algorithm has been tested using 

existing in vivo data.  When compared to three existing methods, 

the proposed algorithm produced superior performance in 

terms of classification accuracy, stability, and learning speed. 

The ability of the algorithm to detect suction provides a reliable 

platform in the development of a pump speed controller that has 

the capability of avoiding suction. 

I. INTRODUCTION 

N recent years, the rotary Left Ventricular Assist Device 

(LVAD) has been successfully used as a mechanical 

support device for many patients suffering from congestive 

heart failure. The rotary LVAD is a mechanical pump 

surgically implanted from the left ventricle to the aorta to help 

maintain the flow of blood from the patient’s heart, which 

cannot effectively work on its own. In order to meet the 

circulatory demand of the patient, developing an appropriate 

pump control system to adjust the blood flow through the 

pump by controlling the rotational speed of the pump is an 

important challenge facing the increased use of these devices. 

An important constraint that should be taken into 

consideration is to insure that the pump is rotated at a speed 

below a threshold beyond which the pump attempts to draw 

more blood from the left ventricle than available causing a 

phenomenon called ventricular suction. This phenomenon, 

which could cause collapse of the ventricle, is dangerous and 

needs to be detected and corrected by lowering the pump 

speed. 

Several approaches have been used to detect suction. 

Among these are ones that extract features from the pump 

flow signal (which is one of very few signals that can be 

easily measured) and use powerful pattern recognition 

algorithms to classify the signal into different states and 

detect suction. These classifiers vary from simple threshold 

comparisons [1] to more complex techniques such as 

Classification and Regression Tree (CART) [2], Discriminant 
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Analysis (DA) [3], and Neural Networks (NN) [4]. 

In this paper, we introduce a new suction detection and 

classification algorithm based on the Lagrangian Support 

Vector Machine (LSVM) method in pattern recognition. The 

LSVM is a modified standard Support Vector Machine 

(SVM) and has high accuracy, stable performance, and fast 

learning speed. Several real-time applications of the SVM 

method in different fields have been reported in the literature 

[5], [6]. The paper is organized as follows. Section II 

describes the proposed classification strategy in details. 

Section III shows the experimental results of the proposed 

algorithm. Section IV compares these results to three existing 

approaches and discusses the feasibility of real-time 

application of the proposed method. Concluding remarks are 

presented in Section V. 

II. PUMP STATUS AND SUCTION INDICES 

A. Definition of Pump Status 

Fig. 1 shows the flow chart of the proposed algorithm. The 

feature extraction module calculates six indices from the 

processed pump flow, which allow determination of pump 

status. In this research, the pump status can be defined as 

follows: 

1) No Suction (NS): This corresponds to the normal 

operating condition of the pump. Within each cardiac cycle, 

the Minimum Pump Inlet Pressure (MPIP) is generally close 

to zero and its difference from the Minimum Left Ventricular 

Pressure (MLVP) is small (i.e.,              
     ), where      is the low (No Suction) threshold on   . 

In addition, the pump flow signal is periodic with a large 

sinusoidal component.  

2) Approaching Suction (AS): In this case,         
   , where     is the high (Suction) threshold on    . That 

is, MPIP decreases much faster than MLVP causing    to 

increase. The pump flow signal becomes less pulsatile 

comparing to the No Suction case. 

3) Suction (S): During this event, the inlet cannula
1
 is 

evidently obstructed, MPIP exhibits very large negative 

spikes, and MLVP is slightly less than zero (i.e.,       ). 

Furthermore, the pump flow waveform exhibits a sudden 

large drop in the slope of the envelope of the minimum pump 

flow signal instead of approximately having a sinusoidal form 

synchronized with heart rate.  

In the following section, the time, frequency, and 

 
1 The cannula is a plastic rigid tube that connects the rotary pump to the 

left ventricle of the heart. 
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time-frequency based suction indices extracted from the 

pump flow are described using a window of 5 seconds. 

B. Feature Extraction  

1) Time-based indices: The time index SI1 is defined based 

on the mean, minimum, and maximum values of the pump 

flow [7]. The expression is as follows: 

                          
                          

  
                     (1) 

where PF is pump flow signal and ∆e is the peak-to-peak 

amplitude of PF. When suction is absent, the mean pump flow 

value is approximately half of the sum of the maximum and 

minimum values of pump flow, which shifts slightly towards 

minimum pump flow while approaching suction. When 

suction occurs, the mean pump flow value is close to the 

maximum pump flow value. Hence, SI1 increases 

dramatically. 

Time indices SI2 and SI3 are calculated with respect to the 

derivative of the pump flow signal as 
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where  
     

  
 
   

 is the maximum derivative of PF and 

 
     

  
 
   

 is the minimum derivative of PF, respectively. SI2 

increases obviously during suction, whereas SI3 decreases at 

the beginning of suction. 

2) Frequency-based indices: The frequency domain 

indices can detect the changes in the harmonic and 

subharnomic energy content of pump flow [3]. Consider 

      as the Fourier transform of the pump flow signal and 

   as the fundamental frequency of pump flow. Also, 

consider          and         , where    is a 

threshold (in radians) that defines an interval centered at   . 

The harmonic index SI4 is defined as the ratio of the signal’s 

total energy in the fundamental component frequency band to 

the total energy in the harmonic component frequency band, 

given by the expression 
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Another frequency index SI5 is defined as the ratio of the 

subharmonic energy to the fundamental energy, given as 

                                      
          
  
 

          
  
  

                                    (5) 

When approaching suction, SI4 starts to decrease and SI5 

starts to increase. In the case of suction event, SI4 decreases 

and SI5 increases abruptly due to the shift of energy from the 

fundamental band to both harmonic and subharmonic band, 

indicating the occurrence of suction. 

3) Time-Frequency-based index: This method is used to 

supplement the frequency-domain approach [3]. The suction 

index SI6 is defined as the standard deviation of instantaneous 

mean frequency of pump flow, expressed as 

                                           
                                (6) 

In (6), the instantaneous frequency is defined as the 

average frequency at a given time [8], expressed as 

                                 
   

            

           
                         (7) 

where          is the squared magnitude of the short-time 

Fourier transform (STFT). The value of SI6 is small without 

suction and increases slightly when suction is approaching, 

and it increases abruptly during suction event. 

The six indices described above are used as inputs to the 

LSVM classifier.  

C. LSVM-based Suction Classifier 

SVM is a reliable and powerful classification algorithm 

and has been successfully applied to various pattern 

recognition problems [9]. The main idea of SVM is to find the 

optimal separating hyperplane (with the maximum margin) 

between two classes (+1 or -1) of the data points.  

LSVM is a very fast and simple algorithm, based on an 

implicit Lagrangian formulation of the dual of a simple 

reformulation of the standard quadratic problem of SVM 

[10]. Although LSVM is originally designed as a binary 

classifier, classification into additional classes is possible. In 

this work, a 2-step LSVM decision tree method is adopted for 

the 3-class problem.  First, we separate the S case from the NS 

and AS cases since suction event is evidently different from 

NS and AS, and secondly NS and AS are classified by another 

LSVM. Details on the LSVM algorithm can be found in [10]. 

III. RESULT 

Fig. 2 (a) shows a pump flow signal of a LVAD in vivo 

experiment used in [3].  The six suction indices derived from 

this signal are also plotted on the same figure.  The changes in 
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Fig. 1.  Flow chart of the proposed suction detection algorithm. 
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these indices as the pump flow signal transitions from NS to 

AS to S are clearly evident in Fig. 2 (b)-(g). These indices are 

used as inputs to the LSVM classifier. The classifier is trained 

on a randomly selected set of 50% of the data and then tested 

on the remaining 50% of the data. The training and testing 

procedures and the description of the database of signals used 

are similar to those described in [3]. The two thresholds on 

   used in the classifier, as mentioned in Section II, are 

chosen as              and             . Due to 

the random selection of data samples, the classification is 

repeated 100 times. All experimental procedures are 

implemented using MATLAB
2
. 

 
2 The MathWorks Inc., Natick, MA. 

    The average classification results of the proposed 

algorithm over 100 runs on the test set are shown in Table I. 

For NS, on average there are 53.36 samples misclassified as 

AS (7.05%) and only 0.5 samples are misclassified as S 

(0.06%). For AS, on average 37.33 samples are misclassified 

as NS (5.82%) and only 5.43 samples are incorrectly 

identified as S (0.85%). For S, on average the erroneous 

number of samples misclassified as NS and AS are as low as 

0.09 (0.09%) and 5.31 (5.31%), respectively.  

IV. DISCUSSION 

A comparison study with three existing algorithms (CART 

[2], DA [3], and NN [4]) is conducted to evaluate the 

performance of the proposed method using the same database 

of signals and procedures described above. The performance 

evaluation criteria are: sensitivity (true positive rate), 

specificity (true negative rate), accuracy (the rate of the total 

number of predictions correctly classified) with their standard 

deviations, and the training/test time. Fig. 3 illustrates the 

comparison of the four approaches, showing that the 

LSVM-based algorithm occupies 7 of 9 performance indices 

(sensitivity, specificity, and accuracy of three cases, 

respectively) as highest classification accuracy and 4 of 9 

smallest standard deviations (most stable performance). Note 

that the CART-based algorithm occupies 3 of 9 smallest 

standard deviations; however, there are 7 of 9 lowest 

classification accuracy indices for CART algorithm. The 

LSVM-based algorithm therefore has the advantage of high 

accuracy and stability when compared to other algorithms. In 

addition, the LSVM-based algorithm needs the least training 

time (learning speed) compared to the other three approaches 

as shown in Table II. This comparison is implemented on a 

2-GHz Intel Pentium Dual CPU desktop computer with 3 

gigabytes of memory. 

The other two performance estimation criteria are the 

Receiver Operating Characteristic (ROC) curve and Area 

under ROC Curve (AUC). The ROC curve is a technique for 

visualizing, analyzing, and choosing classifiers based on their 

performance. The AUC is an index of the quantitative 

measure of the overall performance of the classifiers [11]. 

Note that in this paper, the ROC curve is not made for CART 

method due to the discrete characteristic of the CART 

classifier. In addition, since ROC curve is a graphical plot for 

a binary classifier algorithm, the ROC curves are 
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Fig. 2.  Suction indices extracted from the pump flow. (a) 

Pump Flow. (b) SI1. (c) SI2. (d) SI3. (e) SI4. (f) SI5. (g) SI6. 

TABLE I 

CLASSIFICATION RESULTS OF LSVM CLASSIFIER ON TEST SET
a
 

 NS AS S Total 

NS 
703.14 

(92.89%) 

53.36 

(7.05%) 

0.5 

(0.06%) 

757 

(100%) 

AS 
37.33 

(5.82%) 

598.24 

(93.33%) 

5.43 

(0.85%) 

641 

(100%) 

S 
0.09 

(0.09%) 

5.31 

(5.31%) 

94.6 

(94.6%) 

100 

(100%) 

    aActual classes are in rows, predicted in columns. 
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implemented only for the NS and AS cases since their 

characteristics is similar compared to the S case. Fig. 4 shows 

the ROC curves, indicating that the overall performance of 

the LSVM-based algorithm is better than that of NN and DA 

algorithms. Thus, in general, the LSVM-based approach 

appears to be superior to CART, DA, and NN algorithms in 

terms of classification performance.  

Other more practical considerations in developing a suction 

detection algorithm are the computation and hardware in real 

time. For patients implanted with LVAD, suction must be 

identified in the order of seconds, and the six suction indices 

examined in this paper can be computed at a high rate (62.5 

Hz), which means it can meet the LVAD requirements. 

Furthermore, with the current batch processors available, 

most conceivable features are able to be easily executed in 

real time. Therefore, the proposed system can be a valuable 

tool for real-time suction detection. 

V. CONCLUSION 

In this study, an effective LSVM-based suction detection 

algorithm was presented. Six features were extracted from 

the pump flow signal and used as inputs to the algorithm. 

This algorithm combined with the decision tree strategy was 

used to implement a 3-group classification task. Compared to 

three existing approaches, the proposed algorithm showed 

effective accuracy with high stability and a short learning 

speed. Future work will focus on the development of a 

feedback control strategy to automatically adjust the pump 

speed in rotary LVADs to avoid the occurrence of suction, 

based on the proposed suction detection system. 
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Fig. 4.  Comparison of ROC curves between NS and AS cases. 
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TABLE II 

COMPARISON OF AVERAGE TRAINING/TEST TIME ON 100 RUNS  

 CART DA NN LSVM 

Training time (s) 0.534 0.248 3.126 0.063 

Test time (s) 0.012 0.032 0.02 0.024 

 

       
                                                              (a)                            

                                                                      
                                                             (b) 

 
                                                            (c) 

Fig. 3.  Comparison of classification accuracy. (a) NS. (b) AS. 

(c) S. The brackets indicate the standard deviations. 
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