
  

  

Abstract—Neurobiological processes associated with learning 
are known to be highly nonlinear, dynamical, and time-varying. 
Characterizing the time-varying functional input-output 
properties of neural systems is a critical step to understand the 
neurobiological basis of learning. In this paper, we present a 
study on tracking of the changes of neural dynamics in rat 
hippocampus during learning of a memory-dependent delayed 
nonmatch-to-sample (DNMS) task. The rats were first trained 
to perform the DNMS task without a delay between the sample 
and response events.  After reaching a performance level, they 
were subjected to the DNMS task with variable delays with a 5s 
mean duration. Spike trains were recorded from hippocampal 
CA3 (input) and CA1 (output) regions during all training 
sessions and constitute the input-output data for modeling. We 
applied the time-varying Generalized Laguerre-Volterra Model 
to study the changes of the CA3-CA1 nonlinear dynamics using 
these data. Result showed significant changes in the Volterra 
kernels after the introduction of delays.  This result suggests 
that the CA3-CA1 nonlinear dynamics established in the initial 
training sessions underwent a functional reorganization as 
animals were learning to perform the task that now requires 
delays. 

I. INTRODUCTION 
racking the changes of neural nonlinear dynamics using 
neuronal spiking activities is a critical step to understand 

the neurobiological basis of learning from behaving animals. 
It allows us to bridge the gap between the behavior and the 
well-known forms of neural plasticity, such as long-term 
potentiation (LTP) and long-term depression (LTD). For 
example, it has been shown that LTP induced by high-
frequency stimulation to the perforant path of the 
hippocampus accelerates subsequent classical conditioning 
[1]. LTP was also observed in vivo in hippocampal CA1 
pyramidal cells during an inhibitory avoidance task [2], 
demonstrating that activities generated from a real learning 
task were sufficient for eliciting LTP. On the other hand, it is 
shown that functional cell types were formed and recruited 
in the hippocampus during learning of a delayed-nonmatch-
to-sample (DNMS) task [3].  It suggested that the changes in 
animal behavior at the beginning of training might be caused 
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by the changes in the cell's firing activities. However, how 
the input-output properties of hippocampal regions change 
during learning remains unclear.  The goal of this study is to 
characterize such changes using a recently developed 
quantitative modeling tools. 

Specifically, we applied Generalized Laguerre-Volterra 
model to study the underlying nonlinear dynamics between 
multiple neuronal units by observing spike train inputs and 
outputs only [4, 5]. Eden et al. proposed the stochastic state 
point-process filter (SSPPF) [6], which updates model 
coefficients in proportion to the difference between the 
occurrence of an actual spike and the estimated probability 
of its occurrence. They have applied SSPPF to reconstruct 
monkey hand movement trajectories from a dynamic 
ensemble of spiking motor cortical neurons [7]. We later 
applied SSPPF to our established nonlinear dynamical 
modeling framework to track time-varying systems [8, 9]. 
The integrated method was tested with synthetic simulations.  

Here we applied the integrated method to study the neural 
dynamics when the behaving animals were learning to 
perform the memory-dependent DNMS task. Hippocampal 
CA3 and CA1 cells were shown to be encoding the required 
spatial and temporal information to complete this task [10].  
We recorded spike trains from the CA3 and CA1 regions 
while the animals were learning the task. We will present the 
changes observed in the model derived from these 
experimental data.  

II. METHODS 

A. Experimental Procedures 
 Spike trains were recorded multi-electrode arrays from 
different septo-temporal regions of the hippocampus of rats 
trained with the DNMS task [3].  For each hemisphere of the 
brain, an array of electrodes was surgically implanted into 
the hippocampus, with eight electrodes in the CA3 input 
region and eight electrodes in the CA1 output region. The 
rats were first trained to perform the DNMS task without 
delay, that is, they were learning to press the lever opposite 
to the sample lever immediately after the sample lever was 
presented, as in sessions 29 to 31 of Fig. 1.  And then delay 
intervals were introduced between the sample phase and 
nonmatch phase, as in sessions 32 to 35 of Fig. 1.  Action 
potentials of individual neurons were isolated by time-
amplitude window discrimination and computer-identified 
individual waveform characteristics using a multi-neuron 
acquisition processor (Plexon, Dallas, TX).  Only spike 
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trains with waveforms consistent across sessions were 
included in analyses [3].  
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Fig. 1 Performance of animal 1150 trained with different delay 
intervals. 
 

B. Generalized Volterra Model 
 In order to analyze the nonlinear dynamics underlying 
spike train transformations, a multiple-input, multiple-output 
(MIMO model) first was constructed using a generalized 
Laguerre-Volterra kernel method [4, 5]. A MIMO system 
was decomposed into a series of multiple-input, single-
output systems (MISO). P(t) is the estimated firing 
probability of the output: 
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where erf is the error function; u is the "synaptic potential"; 
a is the after potential; θ is the threshold; and σ is the noise 
variance. Consider the second order Volterra self-kernel 
model where N is the total number of inputs and {k0, k1, k2s} 
are the Volterra kernels, u can be expressed as: 
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After potential a can be rewritten as )]([)( tyhta ∗= , 
where h is the linear feedback kernel. Both feedforward 
kernels k and the feedback kernel h, are expanded with 
orthonormal Laguerre basis functions. Stochastic state point 
process filter is applied to estimate and track the Laguerre 
coefficient over time [6]. Single pulse response functions 
(r1) of each input can be derived as 
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by a single spike from the input neuron as a function of 
delay τ. To describe the joint nonlinear effects of pairs of 
spikes from the input neuron in addition to the first order 
responses, paired-pulse response functions (r2) are expressed 
as a function of the delay of previous spikes, 
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C. Laguerre Expansion 
 The Laguerre-expansion Volterra (LEV) kernel modeling 
technique was used to reduce the number of open parameters 
to be estimated, and to separate system nonlinearities from 
system dynamics. Using the LEV technique, both 
feedforward kernels, k, and the feedback kernel, h, are 
expanded with orthonormal Laguerre basis functions, b, with 
input and output spike trains x and y convolved with 
b,   *)(
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n
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h

j =  Synaptic potential, u, and 
after-potential, a, can be re-written into: 
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Using Laguerre expansion, v can be computed recursively at 
each time t [9]. Let )]()([)( )()(
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where A1 = I + αn I+ ; A2 = αn I + I+ ; [ ]001 …=3A ; I 
is an LxL identity matrix and I+  is an upper shift matrix. The 
convolved functions v include the temporal dynamics and 
thus u and a can be readily calculated based on the present 
values of v and the model coefficients. 

D. Parameter Estimation 
  By the stochastic state point-process filtering algorithm 
[6], coefficient vector C(t) and its covariance matrix W(t) are 
updated iteratively at each time step t [8] : 
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III. RESULTS 
 We have analyzed the spike train data recorded from CA3 
and CA1 of animals learning the DNMS task.  In addition, 
we tracked changes in the underlying nonlinear neural 
dynamics described by the single pulse response functions 
r1, paired-pulse response functions r2, and the linear 
feedback h with a 2ms time resolution.  For example, we 
have tracked the time-varying CA3-CA1 dynamics of animal 
#1150 with an 11-input, 8-output second order model.  Fig. 2 
shows its changes in feedback kernels h(τ) of output Neuron 
#45 across experimental time from sessions with no delay to 
sessions with new delay intervals. The x-axis represents 
experimental time; the y-axis represents the time lag τ 
between the previous input events and the present time; and 
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the z-axis represents the value of h.  Significant kernel 
changes at the session when delay was first introduced.  This 
may correspond to the change in neuron output firing 
properties after the introduction of 5s delay.  
 

 
Fig. 2 Feedback kernels of output Neuron #45 across sessions.  
 
 

 Exemplary single pulse response functions r1(τ) of animal 
#1150 are plotted in Fig. 3. Each row in Fig. 3a and Fig. 3b 
represents a time-varying r1 of one input to the outputs 
Neuron #45 and Neuron #81 respectively.  The x-axis 
represents experimental time; y-axis represents the time lag 
τ between the previous input events and the present time. 
Values of the response functions are color-coded, where red 
represents high values and blue represents low values. 
Results show that, during the sessions with 0 delay (i.e., 
sessions #29, #30 and #31), magnitudes of r1 are small and 
nearly constant. When the delay is introduced to the training 
at session #32, magnitudes of r1 start to increase significantly 
in most of the inputs, showing that the CA3-CA1 dynamics 
changes during the training process. The changes in r1 
persist in the following sessions (#33 to #35). Response 
functions of some inputs eventually converge in the later 
sessions, such as those of input #97 and input #121 as shown 
in Fig. 3a. We have also examined the learning induced 
changes in the paired-pulse response functions r2(τ,τ+Δ) at 
different interspike intervals Δ as shown in Figure 4. Each 
row in Fig. 4 represents a time-varying r2 of one input to the 
output Neuron #45. The x-axis represents experimental time; 
y-axis represents the time lag τ between the previous input 
interspike interval and the present time. Values of r2 are 
color-coded, where red represents high values and blue 
represents low values. At output CA1 Neuron #45, the 
results clearly revealed the remarkable increase in the 
second order nonlinear properties with the introduction of 
delay-demanding memory at session #32.  

 

 
(a) 

 
(b) 

Fig. 3 Single pulse response functions r1(τ) of a) Neuron #45 and b) 
Neuron #81 of animal #1150 tracked across sessions. 
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Fig. 4 Paired-pulse response r2(τ,τ+Δ)  to Neuron #45 as function of 
delay tracked across sessions when interspike interval Δ is a) 4ms, b) 
20ms and c) 100ms. 

IV. DISCUSSION 
 The changes in estimated kernels are consistent with our 
preliminary results of piece-wise non-stationary modeling on 
the same dataset [11], and provide much more 
comprehensive information that allows us to study the fine 
details of the temporal evolutions of the CA3-CA1 nonlinear 
dynamics, i.e., within-session changes of the response 
functions in a millisecond scale. Results suggest that the 
model established in the initial training sessions is under-
going reconfiguration as the animal learns how to perform 
the task when the delays are introduced. We are visualizing, 
in high temporal resolutions, the encoding the short-term 
memory into long-term memory with the development of 
input-output functions. 
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