
 
 

 

  

Abstract—To develop hippocampal prosthetic devices that 
can restore the memory-dependent cognitive functions lost in 
diseases or injuries, it is essential to build a computational 
model that sufficiently captures the transformations of multiple 
memories performed by hippocampal sub-regions.  A universal 
model with a single set of coefficients for all memories is 
desirable, since it can transform the memories without explicitly 
knowing what those memories represent and thus avoids 
switching between multiple models for multiple memories in 
implementation.  In this study, we test the feasibility of such 
universal models of hippocampal CA3-CA1 by estimating the 
multi-input, multi-output (MIMO) nonlinear dynamic models 
using input (CA3) and output (CA1) spike trains recorded 
during multiple behavioral events representing multiple 
memories from rats performing a delayed nonmatch-to-sample 
task.  We further statistically evaluated the model performances 
of the MIMO models on the different events.  Results show that 
the models accurately replicate the output spike patterns during 
those events, and thus can be used as event-invariant nonlinear 
dynamic models that continuously predict the ongoing CA1 
spatio-temporal patterns as the ongoing CA3 spatio-temporal 
patterns unfold.     

I. INTRODUCTION 
erforming the memory-dependent delayed- 

nonmatch-to-sample (DNMS) task involves multiple 
long-term memories such as the memories of lever position 
and task phase [1, 2].  In the hippocampus, these memories 
are represented as spatio-temporal patterns of spikes 
associated with behavioral events and propagating from the 
upstream brain regions, e.g., CA3, to the downstream regions, 
e.g., CA1.  To develop prosthetic devices that can restore the 
memory-dependent cognitive functions of a hippocampal 
region, it is essential to build a computational model that 
sufficiently describes the transformation of multiple 
memories during different behavioral events performed by 
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this region.  One approach of solving such modeling problem 
is to build separate models specific for each memory/event, 
i.e., event-specific models (Fig. 1, Left).  Alternatively, a 
single event-invariant model may be attempted for multiple 
memories/events (Fig. 1, Right).  The latter approach is more 
desirable for developing hippocampal prostheses because it 
generates a universal model that transforms the memories 
without explicitly knowing what those memories represent 
and thus avoids switching between multiple models based on 
the discrimination or monitoring the precise timings of those 
memories/events.  The goal of this study is to test the 
feasibility of such modeling approach by estimating and 
statistically validating the multiple-input multiple-output 
nonlinear dynamic model of CA3-CA1 using input (CA3) 
and output (CA1) spike trains corresponding to the various 
events during the DNMS task.   

 

 
 
Figure 1. Event-specific models vs. event-invariant model.  An event-specific 
model describes the input-output transformation during a single event.  An 
event-invariant model describes the input-output transformations 
with the same set of coefficient during multiple events.  I: input signals; O: 
output signals; S: MIMO models.  

II. METHODOLOGY 

A. Behavioral Task 
Male Long-Evans rats were trained to criterion on a 

two-lever, spatial DNMS task with randomly occurring 
variable delay intervals [1].  Animals performed the task by 
pressing (sample response) a single lever presented in one of 
the two positions in the sample phase (left or right); this event 
is called the “sample response” (Fig. 2, Left).  The lever was 
then retracted and the delay phase initiated; for the duration of 
the delay phase, the animal was required to nose-poke into a 
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lighted device on the opposite wall.  Following termination of 
the delay the nose-poke light was extinguished, both levers 
were extended and the animal was required to press the lever 
opposite to the sample lever; this act is called the “nonmatch 
response” (Fig. 2, Right).  If the correct lever was pressed, the 
animal was rewarded and the trial was completed.  A session 
included approximately 100 successful DNMS trial that each 
consisted of two of the four behavioral events, i.e., left sample 
(LS) and right nonmatch (RN), or right sample (RS) and left 
nonmatch (LN). 

 

 
 
Figure 2. Major behavioral events during the DNMS task.  Each successful 
DNMS trial consists of either LS and RN (top), or RS and LN (bottom). 

B. Recording and Preprocessing of Spike Trains 
Spike trains were obtained from both hippocampal CA3 

and CA1 regions of rats performing the DNMS task using a 
multi-electrode array.  Spikes were sorted, timestamped, and 
discretized with a 2 ms bin size.   

C. Model Configuration and Parameter Estimation 
A general, Volterra kernel-based strategy is used to model 

the MIMO nonlinear dynamics underlying hippocampal 
CA3-CA1 spike train-to-spike train transformations [3-5].  In 
this approach, the identification of spatio-temporal pattern 
transformations from the hippocampal CA3 region to the 
CA1 region is formulated as the estimation of a MIMO model 
that can be decomposed into a series of multi-input, 
single-output (MISO) models with a physiologically 
plausible structure that can be expressed by the following 
equations: 
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The variable x represents input (CA3) spike trains; y 

represents output (CA1) spike trains.  The hidden variable w 
represents the pre-threshold membrane potential of the output 
neurons.  It is equal to the summation of the post-synaptic 
potential u caused by input spike trains, the output 

spike-triggered after-potential a, and a Gaussian white noise ε 
with standard deviation σ.  When w exceeds threshold, θ, an 
output spike is generated and a feedback after-potential (a) is 
triggered and then added to w.  The transformation from x to u 
is expressed as a MISO Volterra series with a set of 
feedforward kernels k.  The transformation from y to a is 
expressed as a single-input, single-output Volterra series with 
a feedback kernel h.   

In order to estimate event-invariant models, input-output 
data during the four major events (-2s to 2s) are extracted and 
concatenated to form the training data for parameter 
estimation.   

Due to the Gaussian noise term and the threshold, this 
model can be considered a special case of the Generalized 
Laguerre-Volterra Model (GLVM), which employs a probit 
link function [4, 5].  All model parameters, i.e., k, h, σ, and θ, 
can be estimated simultaneously with an iterative re-weighted 
least-squares method and a simple normalization procedure.  
To avoid overfitting and reduce model complexity, a 
statistical procedure is used to select the significant inputs and 
model terms [4, 5].  The resulted sparse MIMO model 
achieves maximal out-of-sample likelihood. 

D. Statistical Validation of the Event-Invariant Model 
Due to the stochastic nature of spike firing, estimated 

models are validated using an out-of-sample Kolmogorov 
-Smirnov (KS) test based on the time-rescaling theorem [6].  
In short, this method directly evaluates the continuous firing 
probability intensity predicted by the model with the recorded 
output spike train.  According to the time-rescaling theorem, 
an accurate model should generate a conditional firing 
intensity function that can rescale the recorded output spike 
train into a Poisson process with unit rate.  By further variable 
conversion, inter-spike intervals (ISIs) should be rescaled into 
independent uniform random variables on the interval (0, 1).  
The model goodness-of-fit then can be assessed with a KS 
test, in which the rescaled intervals are ordered from the 
smallest to the largest and then plotted against the cumulative 
distribution function of the uniform density.  If the model is 
accurate, all points should be close to the 45-degree line of the 
KS plot.  Confidence bounds (e.g., 95% or 99%) can be used 
to determine the statistical significance. 

In order to test the event-invariability of an estimated 
model, the prediction performances of the model on the 
multiple events need to be assessed and compared.  By 
definition, an event-invariant model should be able to capture 
accurately the input-output properties of the system during 
different events.  Thus, the first criterion (Criterion A) 
requires the KS plots of the estimated model to be close to the 
45-degree line in all events.  A model that meets Criterion A 
can be called an event-invariant model.  However, it is quite 
possible that a model is event-invariant simply because there 
is no event-specificity in the system to begin with.  For 
example, the firing characteristics of the modeled CA1 
neuron may remain the same across different events, i.e., the 
CA1 neuron does not belong to any functional cell type (FCT) 
[1].  In order to rule out this possibility, we introduce 
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Criterion B that requires (i) the distributions of ISIs during 
different events to be different, and (ii) the distributions of the 
ISIs rescaled by the model to be similar.  Statistically, (i) can 
be tested by comparing the KS plots of the ISIs with a trivial 
model (e.g., zeroth-order model or "no model"), and (ii) can 
be tested by comparing the KS plots of the ISIs with the 
estimated MISO nonlinear dynamic model.  The zeroth-order 
model is simply a homogeneous Poisson model taking only 
the mean firing rate of the output into account (without 
including the inputs and the past output activities).  A model 
that meets both Criterion A and B will be called a true 
event-invariant model.  Obviously, a true event-invariant 
model is nothing else but an event-invariant model of a FCT. 

III. RESULTS 
We estimate and validate MISO models with multi-event 

input-output datasets using the method described in the 
Methodology Section. 
 

 
 
Figure 3. KS plots of a MISO model in the four major events (case #1). Red 
lines: KS statistics of ISIs without applying the MISO model; blue lines: KS 
statistics of ISIs after applying the MISO model; Black lines: 95% 
confidence bounds and the 45-degree line. 99% confidence bounds are not 
shown. 
 

First, we examine the model goodness-of-fit during the 
events.  Figure 3 and 4 show two cases of the models.  Before 
applying the MISO models, the KS plots of the ISIs (red 
lines) all fall out of the 95% or 99% confidence bounds in all 
four behavioral events in both datasets.  After applying the 
MISO models, the KS plots (blue lines) become much closer 
to the 45-degree lines in all events.  In Case #1, KS plots with 
the model are within the 95% confidence bounds in 3 of 4 
events (in the RN, the KS statistics is slightly out of the 95% 
bounds but within the 99% bounds); in Case #2, KS plots with 
the model are all within the 95% confidence bounds.  These 
results show that these MISO models can capture the 
hippocampal CA3-CA1 nonlinear dynamics in all events.  

With 95% as the significance threshold, Model #2 is an 
event-invariant model; with a more relaxed 99% threshold, 
both Model #1 and #2 are event-invariant models. 

 

 
 
Figure 4. KS plots of a MISO model in the four major events (case #2).  
 

 
TABLE I 

PAIR-WISE KOLMOGOROV-SMIRNOV TEST RESULTS  
CASE #1 

 LS-RN LS-RS LS-LN RN-RS RN-LN RS-LN 

NM 
2.3×10−4 1.9×10−4 6.9×10−5 5.2×10−3 2.8×10−3 2.1×10−3 

*** *** *** ** ** ** 

M 
0.13 0.55 0.46 0.05 0.27 0.12 

- - - - - - 
 

 CASE #2 
 LS-RN LS-RS LS-LN RN-RS RN-LN RS-LN 

NM 
0.15 5.2×10−4 0.25 5.0×10−6 7.3×10−2 4.8×10−3 

- *** - *** - ** 

M 
6.6×10−2 4.2×10−2 0.72 2.6×10−2 0.16 0.22 

- * - * - - 

NM: no model; M: with model.  The numerical values are the p-values of the 
two-sample KS tests. The symbols -, *, **, and *** indicate p > 0.05, p < 
0.05, p < 0.01, and p < 0.001, respectively. 

Secondly, we conduct pair-wise comparisons between the 
KS plots during different events, with and without applying 
the MISO models.  The results are shown in Table I.  In Case 
#1, the KS plots without the model (i.e., no model, or NM) are 
significantly different from each other in all pairs of events. 
With the model (i.e., M), there is no significant difference 
between any pair of the events.  In Case #2, the KS plots 
without the model are significantly different in 3 of the 6 
possible pairs of events.  With the model, 0 or 2 pairs of 
events show significant differences (with the significance 
threshold value α set at 0.05 or 0.01, respectively).  In both 
cases, the p-values of the null hypotheses are markedly 
increased from "no model" to "with model", indicating that 
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the differences in the distributions of ISIs during different 
events are greatly reduced by the models.  With α = 0.05, 
Model #1 is a true event-invariant model; with α = 0.01, both 
Model #1 and #2 are true event-invariant models.  

 

 
Figure 5. Perievent histograms of actual output spike train and predicted 
spike trains. Case #1 presents a phase-type cell; Case #1 presents a trial-type 
cell.  In both cases, the MISO models accurately replicate the markedly 
different per-event histograms with a single set of coefficients. Bin size is 50 
ms in all histograms. 

 
Lastly, we examine the performances of the models in 

terms of replicating the peri-event histograms of the four 
major events.  The peri-event histograms allow more direct 
appreciations of the averaged firing patterns during the 
events.  Single-trial output spike trains are predicted from the 
estimated MISO models and the input spike trains using a 
simulation procedure [3, 4].  Peri-event histograms of 
predicted spike trains are then calculated and compared with 
the peri-event histograms of the actual spike trains.  Figure 5 
shows two representative cases.  Case #1 presents a 
phase-type cell, i.e., a FCT that has high firing during the 
phase events (LS and RS).  Case #2 presents a trial-type cell, 
i.e., a FCT that has high firing during two events that 
constitutes a success trial (LS and RN, or RS and LN in this 
case).  It is evident that the MISO model can not only 
replicate the salient characteristics in firing rates during 
different events (e.g., in Case #1, the firing rates are high in 
LS and RS, and low in RN and LN; in Case #2, the firing rate 
are high in RS and LN, and low in LS and RN), but also 
capture some of the more subtle features in the temporal 
patterns of the spike trains (e.g., the prominent single peak in 
Case #1, and the multiple peaks in Case #2).  

IV. DISCUSSION 
 We estimate and validate event-invariant models of 

hippocampal CA3-CA1 for the development of hippocampal 
prostheses.  The estimation of even-invariant model is 
straightforward – it simply requires using the input-output 
data during multiple events of interest to estimate the model 
coefficients.  In this study, we include the four most critical 
events, i.e., LS, RN, RS and LN, during the DNMS task for 
the sake of efficiency.  Other events, even the entire 
sequences of the input-output spike trains, can also be 
included in estimation, depending on the purpose of the 
model. 

Furthermore, the event-invariabilities of the estimated 
models are evaluated with two statistical criteria.  The 
purpose of using these criteria is to ensure that the models can 
not only predict accurately the output spike trains during 
multiple events, but also indeed capture the differences 
between the output spike trains during different events.  The 
examples shown in this paper indicate that it is possible to 
build even-invariant models of hippocampal CA3-CA1.  
These results also suggest that the nonlinear dynamic 
transformational properties of the hippocampal CA3-CA1 
remain constant across different forms of memories during 
the DNMS task in those well-trained animals. 

Obviously, the event-invariabilities of the CA3-CA1 
models depend on two factors: (i) the richness of information 
about CA1 firings in the ensemble firings of the CA3 neurons, 
and (ii) the generality of the nonlinear dynamic models, since 
CA1 outputs are predicted by the models based on the CA3 
inputs.  Natural questions to ask are how exactly such 
event-invariability is achieved and what the relative 
contributions of these two factors are.  We aim to answer 
these questions in our future studies.  
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