
  

  

Abstract—We present a novel methodology for modeling the 
interactions between neuronal ensembles that utilizes the 
concept of Principal Dynamic Modes (PDM) and their 
associated nonlinear functions (ANF).  This new approach 
seeks to reduce the complexity of the multi-input/multi-output 
(MIMO) model of the interactions between neuronal ensembles 
– an issue of critical practical importance in scaling up the 
MIMO models to incorporate hundreds (or even thousands) of 
input-output neurons.   Global PDMs were extracted from the 
data using estimated first-order and second-order kernels and 
singular value decomposition (SVD).  These global PDMs 
represent an efficient “coordinate system” for the 
representation of the MIMO model.  The ANFs of the PDMs 
are estimated from the histograms of the combinations of PDM 
output values that lead to output spikes.  For initial testing and 
validation of this approach, we applied it to a set of data 
collected at the pre-frontal cortex of a non-human primate 
during a behavioral task (Delayed Match-to-Sample). Recorded 
spike trains from Layer-2 neurons were viewed as the “inputs” 
and from Layer-5 neurons as the outputs. Model prediction 
performance was evaluated by means of computed Receiver 
Operating Characteristic (ROC) curves.  The results indicate 
that this methodology may greatly reduce the complexity of the 
MIMO model without significant degradation of performance.    

I. INTRODUCTION 
ODELING of neuronal ensemble activity remains one of 
the great engineering challenges in the study of neural 
function and the design of advanced neuroprostheses.  

Early work using ‘‘integrate-and-fire’’ models was useful in 
the exploratory phase but it reached soon its limits of utility 
because it represents a drastic simplification of the actual 
dynamics encountered in the nervous system.  At the same 
time, it became evident that detailed approaches of the 
Hodgkin-Huxley mold are too cumbersome to be useful in 
the context of large-scale neuronal ensembles or networks.  
The approach introduced by Hopfield-type neural networks 
and perceptron-type artificial neural networks created, for a 
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while, considerable excitement and a fair amount of creative 
work, but led eventually to the sobering realization that these 
formulations were not necessarily a good or meaningful 
representation of the dynamics of actual neural networks.  
This gave rise to intensified and ongoing efforts to find new 
or hybrid approaches that meet the dual challenge of fidelity 
to actual neural function and feasibility rooted in reasonable 
model parsimony.  We have participated in this collective 
effort by exploring the use of parsimonious forms of 
Volterra-type models which offer the requisite flexibility to 
represent actual neural function with adequate fidelity but 
have been viewed heretofore as prohibitively cumbersome.  
Our results to date have offered considerable promise in 
achieving reasonable parsimony and predictive capability for 
the dynamic nonlinear MIMO models that are required for 
satisfactory representation of actual neural systems [1, 4-8]. 
     The developed modeling methodologies have been tested 
with actual experimental data from the hippocampus of 
rodents performing specific behavioral tasks [2], whereby 
the causal relationship between the recorded activity of 
neuronal ensembles in the CA3 region of the hippocampus 
and neuronal ensembles in the CA1 region is quantified with 
a MIMO model.  Validation of these models has been 
attempted so far with the testing of specially designed 
hippocampal prostheses (essentially a CA3-to-CA1 ‘‘neural 
bypass’’) and through the demonstrated efficacy of designed 
spatio-temporal patterns of multi-unit neurostimulation [6].  
The hippocampus is a region of the brain responsible for the 
formation of new long-term memories. We seek to redress 
clinical conditions in which part of the hippocampal intrinsic 
trisynaptic circuit is damaged, which often occurs as a result 
of stroke (selective loss of CA1 neurons), epileptic activity 
(preferential damage to CA3), or head trauma (preferential 
damage to hilar neurons). Alzheimer’s Disease and other 
forms of dementia are also associated with loss of neurons 
throughout the hippocampal formation.  
     The obtained results to date have provided evidence of 
the validity and efficacy of this MIMO modeling approach 
in the rat hippocampus [5-8].  Notwithstanding the success 
of these efforts, the challenge remains with regard to the 
practical ‘‘scaling up’’ of this approach to large populations 
of neurons.  The ensembles to date are comprised of a 
limited number of neurons (up to 32 input neurons and 16 
output neurons).  If the numbers of input/output neurons rise 
into the hundreds, then the complexity of the MIMO model 
begins to test our current computational capabilities.  
Considerable efforts have been dedicated to exploring 
rigorous ways to compact the MIMO models further without 
compromising performance.  The work presented herein is 
part of this effort and concerns the use of the concept of 
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Principal Dynamic Modes (PDM) that has been recently 
introduced by our group and applied successfully to various 
physiological systems [3].  
     In the PDM modeling approach, we seek to determine a 
set of basis functions (the PDMs) that represent the most 
efficient ‘‘coordinate system’’ for the representation of all 
the Volterra kernels of a given system.  Over the last 10 
years, we have developed and tested a methodology by 
which the PDMs of a given system can be obtained from 
input-output data.  Static nonlinear functions associated with 
the PDMs (termed ANF: associated nonlinear functions) 
complete the model. This approach has been shown to 
provide considerable benefits in terms of model compactness 
in several diverse applications [3] and it is explored here in 
the context of MIMO modeling of neuronal ensembles. 
      This paper presents some initial results of exploratory 
efforts in PDM-based MIMO modeling of neuronal 
ensemble activity using data from a small number of neurons 
(4 inputs and 4 outputs) in the pre-frontal cortex of non-
human primates.  These results appear to hold great promise 
with regard to the potential modeling efficiency in this 
particular context, although the actual test of scaling up to 
numerous input/output neurons is still to come.        

II. METHODOLOGY 
 As mentioned above, we seek to obtain parsimonious 

representations of MIMO Volterra-type models that have the 
demonstrated ability to represent arbitrary dynamic 
nonlinear transformations of spatio-temporal input-output 
data (i.e. spike-trains from multiple neurons of neuronal 
ensembles). We have already developed an effective 
methodology for the estimation of Volterra kernels using 
Laguerre expansions [3]. To reduce further the complexity 
of the resulting MIMO model, we seek to determine the 
PDMs of the given system from the estimated kernels.  This 
is accomplished through a three-step procedure: (1) we 
perform eigen-decomposition on all the second-order kernels 
and retain only the “significant” eigen-vectors by applying a 
selection criterion on the respective eigen-values; (2) we 
construct a rectangular matrix composed of all the first-order 
kernels and all the selected “significant” eigen-vectors of the 
second-order kernels weighted by the corresponding eigen-
values; and (3) we perform singular value decomposition 
(SVD) of this rectangular matrix and select the “significant” 
singular vectors by applying a selection criterion on the 
respective singular values.  The selected singular vectors are 
the PDMs of this MIMO model. 

III. RESULTS FROM EXPERIMENT DATA 
    The data were collected in the lab of Dr. Deadwyler at 
Wake-Forest University from layers 2 and 5 of the pre-
frontal cortex of non-human primates (NHP) that were 
trained to remember a displayed (and immediately removed) 
image and later re-select this image by moving a cursor on 
the screen to match it among several images presented after 
random delays (i.e. a Delayed-Match-to-Sample task). When 
the correct image is selected, the animal is rewarded.  

During this task, the neuronal activity is recorded at the 
layer-2 and the layer-5 of the pre-frontal cortex (PFC).  

We analyzed the data around the response-presentation 
phase of the correct Match responses in 4 Layer-2 (input) 
and 4 Layer-5 (output) neurons.  The spikes were binned 
with 10 msec binwidth. The peri-event mean-firing-rate was 
between 0.25 and 20 spikes per second. We estimated the 1st 
and 2nd order kernels using Laguerre expansions with α = 
0.25, L = 5, M = 51, and Q = 2.  We followed the previously 
described procedure for the selection of the PDMs of this 
MIMO model.  Four PDMs were deemed significant in this 
specific system.  An illustrative example of the obtained four 
PDMs over 50 trials (NHP 1357, session 8017) is shown in 
Fig. 1.  These PDMs can be used as a basis of functions to 
represent all the kernels of this MIMO model.  

 
Fig. 1.  The four PDMs of the MIMO model obtained from the data of 
NHP1357 for the first 50 trials of session 8017. 
 

To construct the MIMO model of this system (see Fig. 2), 
we must determine the ANFs associated with the PDMs.   

 

 
 

Fig. 2.  Block diagram of the MIMO model using 4 global PDMs with four 
layer-2 input neurons and four layer-5 output neurons. UL:  upper-left unit, 
UR: upper-right unit, LL: lower-left unit, LR: lower-right unit. 
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In order to determine the 16 ANFs of this PDM-based 
MIMO model (equal to the product of the number of inputs 
times the number of PDMs) for each output, we form the 
ratio of the histogram of PDM outputs leading to output 
spikes to the histogram of all PDM outputs in the data.  As 
an illustrative example, Fig. 3 shows the obtained ANFs for 
one (UL: upper left) of the 4 output neurons in layer-5 of 
PFC.  Note that the ordinate values of the ANFs can be 
interpreted as the individual contribution of each input-PDM 
“channel” to the probability of firing of the respective output 
neuron.  We observe in Fig. 3 that most of these ANFs make 
relatively small contributions to output firing and a few 
make significant contributions to output firing for high 
values of the abscissa (which represents the PDM output for 
the respective input-PDM channel).  This observation is 
utilized later to reduce further the complexity of the model. 

 
Fig. 3.  The 16 ANFs for one (UL) of the output neurons in layer-5 of PFC.  

    Since the total number of ANFs for each output is the 
product of the number of PDMs times the number of inputs, 
it is evident that the complexity of the MIMO model will 
increase linearly (i.e. proportionally) with increasing 
number of inputs (for each output) -- and not quadratically 
as is the case in the current second-order MIMO model.  It is 
obvious that this represents a major practical advantage of 
the PDM approach in terms of scaling up the MIMO model 
to large numbers of inputs and outputs. 

It was indicated above that we can reduce further the 
number of required ANFs in the MIMO model by “pruning” 
the ones that have no significant impact on the output firing.  
Upon examination of the ANFs in Fig. 3, we observe that 
some have shapes that are relatively flat (i.e. the ratio R of 
the maximum to the minimum value is close to 1). Thus, we 
may practically ignore the ANFs that have small R value 
(i.e. setting them to zero in the PDM model). To apply this 
pruning procedure algorithmically, we have to set a 
threshold value for R in all ANFs, below which an ANF is 
considered insignificant. The top panel of Fig. 4 shows the 
total number of remaining ANFs for all four output neurons 
(the maximum number of ANFs is 4 outputs x 4 PDMs x 4 
inputs =64).  The rate of decrease of the total number of 
“active” ANFs with increasing R is about the same for all 
inputs. The bottom panel of Fig. 4 shows the probability of 
true-positive prediction by the pruned PDM-based MIMO 

model for the respective output neuron over various 
threshold values of R.  The probability of true-positive 
prediction increases up to a certain point and then declines 
(for R > 3).  Based on these results, we chose in this example 
the threshold value: R = 3. The total number of “active” 
ANFs reduces from 64 to 23 for R = 3. The remaining ANFs 
of the pruned PDM model are shown in Fig. 5 for each of 
the four output layer-5 neurons.  

 

 
Fig. 4.  The total number of remaining ANFs (top) and the probability of 
true- positive predictions (bottom) vs. various threshold values of R for the 
four output neurons of layer-5 in the PFC. 
 

 

 
Fig. 5.  The pruned ANFs of the PDM-based MIMO model for the four 
Layer-5 output neurons when the threshold R = 3 is used for pruning. 
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Using these pruned ANFs, we can predict the output spikes 
for each of the four layer-5 output neurons for any given 
activity of the four layer-2 input neurons. The performance 
of the PDM model is evaluated by means of the receiver 
operating characteristic (ROC) curves. Assuming maximum 
spike jitter of one bin, we define a true-positive prediction 
when the predicted spike is within one bin from the actual 
output spike – otherwise, we have a false positive prediction. 
Consecutive true positives are counted separately only when 
there are also consecutive actual spikes – otherwise, they are 
counted as one true positive.  The right column of Fig. 6 
shows the resulting ROC curves for the four output neurons 
of this example, obtained from the pruned PDM model with 
the ANFs shown in Fig. 5. The ROC curves obtained by 
means of the full MIMO model including all the Volterra 
kernels (a model of much greater complexity) are shown in 
the left column of Fig. 6.  The ROC curves are comparable, 
giving credence to the notion that the PDM modeling 
approach may indeed offer a more parsimonious alternative 
for practical MIMO modeling of neuronal ensembles. 
  

 

 

 

 
 
Fig. 6.  The ROC curves obtained from the full MIMO model including all 
the Volterra kernels (left column) and from the PDM-based MIMO model 
with the pruned ANFs of Fig. 5 (right column) for the four output neurons. 
 

IV. DISCUSSION AND CONCLUSION 
We have presented a new methodology for modeling the 

nonlinear interrelationships between neuronal ensembles 
with Volterra-equivalent models that retain representational 
efficiency (i.e. model compactness) and provide excellent 
predictive capability.  This methodology is based on the 
concept of Principal Dynamic Modes (PDMs) and their 
associated nonlinear functions (ANFs) that has been recently 
developed and applied successfully to various physiological 
systems [3].  The obtained multi-input/multi-output (MIMO) 
models are dynamic and nonlinear, but their complexity 
increases only linearly with increasing number of inputs (for 
each output), while the complexity of their Volterra-type 
counterparts increases faster (e.g. quadratically for a second-
order MIMO model).  This fact has critical practical 
implications in the scaling up of the MIMO models of 
neuronal ensembles to accommodate hundreds (or even 
thousands) of input-output neurons in the future. 

Preliminary results of the application of this methodology 
to data collected from cortical neurons of Layer 2 (inputs) 
and Layer 5 (outputs) in the pre-frontal cortex of a behaving 
non-human primate corroborated the basic premise of the 
advocated approach by demonstrating significant reduction 
in the complexity of the PDM-based MIMO model without 
any significant degradation in predictive performance.  If 
this result becomes confirmed by additional studies 
involving larger numbers of input-output neurons, then we 
will have at our disposal a practical methodology that can 
yield PDM-based (Volterra-type) MIMO models 
incorporating large numbers of input-output neurons with 
ordinary computational means.      
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