
  

Abstract—Movement misclassifications often occur during 
real-time pattern recognition control. Majority vote and a 
decision-based velocity ramp are two different post-processing 
methods that have been suggested to improve real-time control.  
With majority vote, spurious misclassifications are removed at 
the expense of an additional controller delay. With a decision-
based velocity ramp, the effect of misclassifications is 
minimized by attenuating movement speed following a change 
in decision from the classifier. The goal of the study was to 
determine which, if any, post-processing method improved 
real-time control above a baseline condition that did not involve 
post-processing. Five non-amputee subjects controlled a virtual 
prosthesis in real time using pattern recognition. While 
performing a challenging target achievement test in a virtual 
environment, subjects had significantly higher completion rates 
(p < 0.04) and more direct paths to the target (p < 0.02) while 
using the velocity ramp than while using majority vote or the 
control condition. There were no significant differences in 
completion rate or path efficiency between the majority vote 
conditions and the control condition (p > 0.6). The benefits of 
removing misclassifications through majority vote may be 
offset by the added controller delay. These results highlight the 
need for real-time performance measures, as methods that have 
been shown to reduce errors during offline analysis may not 
improve real-time control. 

I. INTRODUCTION 

ffective real-time use of a prosthesis requires quick and 
accurate responses to the user’s commands. Myoelectric 

pattern recognition allows users to control their prostheses in 
an intuitive way and has the potential to improve the current 
level of control. With pattern recognition, movement is 
decoded through a series of steps that include data 
windowing, feature extraction, dimensionality reduction, and 
classification. Previous research shows that various 
combinations of feature sets and classifiers have offline error 
rates below 5% [1-4]. Movement speed can be decoded in 
parallel with classification [5, 6]. By varying muscle 
contraction levels, users are able to perform fast or slow 
prosthesis movements [7]. Two post-processing methods, 
majority vote [8] and a decision-based velocity ramp [9], 
applied after classification have been proposed for 
improving pattern recognition control.  

 In a majority vote scheme, the class that occurs most 
frequently across the last n decisions is selected as the class 
output (Fig. 1A). The movement speed remains unchanged. 
Majority vote has the potential to reduce classification errors 
by removing spurious misclassifications but adds an 
additional controller delay. For this study, the controller 
delay is defined as the length of time between the users’ 
commands (i.e. myoelectric intent) and the corresponding 
action of the device. The number of votes and length of 
controller delay that can exist before the control of a 
prosthetic system degrades has been debated [8, 10] but 
currently no research exists on users’ real-time performance 
using a pattern recognition system with majority vote.  
 In a decision-based velocity ramp scheme, the decision 
remains unchanged but the movement speed is altered (Fig. 
1B). The velocity ramp attenuates the speed of any motion 
after a change in the classifier decision and has the potential 
to reduce the effect of misclassifications [9]. This post-
processing method may prove beneficial because 
misclassifications often occur at movement onset or during 
transitions. The velocity ramp does not add an additional 
controller delay since the decision stream remains 
unchanged. 
 The goal of this study was to determine which, if any, 
post-processing method improves users’ real-time pattern 
recognition performance. We hypothesized that due to the 
fact that there is no additional controller delay associated 
with the velocity ramp, users should perform better while 
using the velocity ramp than while using majority vote. 

II. METHODS 

A.   Experimental Setup 

Five non-amputee subjects participated in this study. All 
subjects had experience controlling a virtual prosthesis in 
real time using a pattern recognition system. Subjects 
provided written informed consent. 

Four self-adhesive silver/silver chloride bipolar EMG 
electrodes were placed in a ring at the proximal portion of 
the forearm. The EMG signals were amplified and high-pass 
filtered at 20 Hz. Data were sampled at a frequency of 1 kHz 
and processed in real time using custom Matlab programs.  

Subjects trained the system to recognize seven motion 
classes: wrist flexion/extension, forearm supination/ 
pronation, hand open/close, and no movement. Subjects 
were prompted with a demonstration of each movement and 
were asked to perform the movement at a comfortable level 
of effort. Each contraction was held for three seconds and 
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Fig 1. Post-processing comparison between 500 ms A) majority vote and B) decision-based velocity ramp. With a majority vote the class decision may 
change but the movement speed remains the same; spurious misclassifications are removed but at the cost of delayed movement and position overshoot. 
With a velocity ramp the class decision remains the same but the movement speed may change; the effect of misclassifications are minimized through an 
attenuation of the movement speed following a change in decision from the classifier.   
 

performed in the order of wrist rotation, wrist flexion/ 
extension, and hand open/close. Movements were repeated 
eight times. Twelve seconds of data per class were used to 
train a linear discriminate analysis (LDA) classifier and 
twelve seconds of data per class were used to test the 
classifier.  

The pattern recognition system segmented the EMG data 
from each channel into a series of 150 ms analysis windows 
with a 50 ms window increment. Four time-domain features 
(mean absolute value, number of zero crossings, waveform 
length, and number of slope sign changes [8]) were extracted 
from the EMG data. The LDA classifier was used to predict 
user commands and control a virtual prosthesis.  

Movement speed was extracted from the same analysis 
window as the data used for the class decision. Speeds were 
calculated by averaging the mean absolute values of EMG 
signals for all channels, k, and were multiplied by an 
empirically determined boost factor, B: 
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B.   Post-Processing Methods 

 Majority Vote: Because there is no existing literature on 
the use of majority vote during real-time pattern recognition 
control, we investigated three different majority vote 
lengths: 
 1) MV 150ms: According to Farrell and Weir [11], when 
using  majority vote with overlapping windows, the optimal 
controller delay, D,  is dependent upon the data analysis 

window, Ta; data window increment, Tinc; number of votes, 
n; and the signal processing time, Td:.  
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With the current study’s pattern recognition settings, Td was 
negligible in comparison to Tinc. Using an optimal controller 
delay, D, of 150 ms [12], n was calculated to be equal to 
three votes (2), which is equivalent to a majority vote length 
of 150 ms. 
 2) MV 250ms: Based on (2), the 250 ms majority vote 
length, which is equivalent to five votes, results in a 
controller delay of 200 ms and still satisfies the range of 
optimal controller delays found by [12].  
 3) MV 500ms: Based on (2), the 500 ms majority vote 
length, which is equivalent to ten votes, results in a 
controller delay of 325 ms. Although this length exceeds the 
300 ms controller delay threshold that is generally accepted 
as being perceivable to the user [8], it was included in the 
study since it uses the same amount of time history as the 
Ramp 500ms condition.  

 Velocity ramp: The velocity ramp attenuated movement 
speed following a change in class decision [9]. Ramp output 
speed, Vout, was calculated by multiplying the ramp gain, 
RG, for each class, i, by the desired speed, Vin, according to 
(3): 

ܸ௨௧ ൌ ܩܴ כ ܸ.  (3)
 

The velocity ramp attenuated speed following a change in 
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the class decision by applying a gain that varied linearly 
between 0 and 1. The ramp gain was calculated by (4):  
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ܮ
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where C is the value of a counter associated with the current 
class and L is the ramp length defined by the experimenter. 
The minimum of each counter was 0 and the maximum was 
equal to the ramp length. The ramp length defined the 
amount of time it took RG to increase to 1. 

Based on pilot data with non-amputee subjects, we 
investigated two different velocity ramp lengths: Ramp 
500ms and Ramp 1000ms.  

C.   Performance Tests 

Subjects performed the Target Achievement Control 
(TAC) Test [13] in the virtual environment to quantify 
performance. During this test, subjects were instructed to 
move the virtual arm in real time to a prompted target 
posture (Fig. 2). Subjects were required to perform a 
combination of three motions (e.g. wrist flexion, forearm 
supination, and hand close) to reach the target posture. To 
provide visual feedback, the virtual hand changed color 
when it reached the target posture within an acceptable 
tolerance (±5 degrees for each degree of freedom). Subjects 
had to remain in the target for 2 s and had 20 s to complete 
each trial. The maximum speed of each degree of freedom 
was 100 degrees per second. Trials were completed more 
quickly if subjects were able to control the virtual arm 
without producing unwanted motions. Overshooting the 
target posture or producing an incorrect class decision would 
require subjects to correct the unnecessary movement. 

Subjects performed TAC Tests in the following 
conditions: Control (no post-processing), MV 150ms, MV 
250ms, MV 500ms, Ramp 500ms, and Ramp 1000ms. 
Following a practice session for each condition, subjects 
performed a set of three tests per condition. Each set 
consisted of eight target postures and the order of conditions 
was randomized.  

Performance metrics included completion rate, 
completion time, and path efficiency. Completion rate was 
the percentage of successfully completed postures. 
Completion time was the time from the start of the trial to 
the successful achievement of the posture or the trial 
timeout, not including the 2 s dwell time. Path efficiency 
was calculated as the shortest path to the target divided by 
the total distance traveled by the virtual prosthesis.  

We performed a repeated measures ANOVA followed by 
planned contrasts to test for differences in completion rate, 
completion time, and path efficiency across the conditions. 
The MV 500ms condition was not included in the statistical 
analysis of TAC Test performance metrics since it was only 
included as a time-matched comparison to the Ramp 500ms 
condition and likely exceeded the optimal controller delay. 
The MV 500ms condition was included in the statistical 
analysis for classification error. 

 

Fig 2.Example of the Target Achievement Control (TAC) Test. A) In this 
trial, the subject needed to flex the wrist, supinate the forearm, and close the 
hand to reach the target posture outlined in grey. B) The virtual hand turned 
green once the target posture was achieved. 

III. RESULTS 

With no post-processing, average off-line classification 
error was 5.1% ± 3.3%. Classification error significantly 
decreased during all majority vote conditions compared to 
the control (4.1% ± 2.8% for MV 150ms; 3.3% ± 2.3% for 
MV 250ms; and 1.7% ± 1.2% for MV 500ms) (p < 0.05). 

Subjects completed significantly more TAC Test trials 
during the velocity ramp conditions compared to the 
majority vote (p = .002) or control (p = 0.04) conditions 
(Fig. 3A). There was no significant difference in completion 
rate between the majority vote and control conditions (p = 
0.73). Subjects completed trials in a significantly shorter 
amount of time while using the velocity ramp compared to 
majority vote (p = 0.01). No significant differences in 
completion time were found when post-processing methods 
were compared to the control condition (control vs. velocity 
ramp: p = 0.36, control vs. majority vote: p = 0.30) (Fig 3B). 
Subjects significantly increased their path efficiency with the 
velocity ramp compared to the majority vote (p < 0.001) or 
control conditions (p = 0.02) (Fig. 3C). No significant 
differences were found for path efficiency between the 
majority vote conditions and the control condition (p= 0.67). 

IV. DISCUSSION 

The post-processing method of using a decision-based 
velocity ramp resulted in the most controllable real-time 
pattern recognition system. Since the velocity ramp did not 
change the classifier’s decision, it was presumed that the 
percentage of misclassifications did not change between the 
velocity ramp conditions and the control condition. 
Misclassifications still occurred, but their effect on 
prosthesis positioning was reduced, thereby allowing 
subjects to be successful during the TAC Test. Another 
advantage of this post-processing method is that a larger data 
history can be used. The large ramp lengths used in this 
study (i.e. 500 and 1000 ms) did not adversely affect users’ 
performance and may have improved performance by 
increasing users’ fine control. 

To our knowledge, this is the first demonstration of using 
majority vote during real-time pattern recognition control. 
Previous studies have suggested that majority vote can 
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Fig 3. TAC Test performance metrics: A) completion rate, B) completion 
Time, and C) path efficiency. Error bars denote standard error and * denotes 
a significant difference (p < 0.05) between conditions. The MV 500ms 
condition was not included in the statistical analysis but is included in this 
figure for comparison. 
 

improve control by decreasing classification errors [8, 11]. 
Our offline data analysis demonstrated a significant decrease 
in classification error with majority vote, but our real-time 
results show no significant differences in performance when 
compared to the control condition. The benefit of having 
fewer classification errors is most likely offset by the 
additional controller delay.  The majority vote queue lengths 
tested in this study illustrate this trend. The MV 150ms 
condition potentially had too short a queue (i.e. three 
decisions) to see a performance benefit as overall 
classification error only decreased from 5.1% to 4.1% . The 
MV 500ms condition had the longest queue (i.e. ten 
decisions), reducing classification errors to less than 2%, but 
added a lengthy controller delay. The MV 250ms condition, 
which better balanced this tradeoff, did not show a change in 
performance compared to the control condition These results 
highlight the need for real-time performance measures, as 
methods that have been shown to reduce errors during 
offline analysis may not improve real-time control. 

The current study had some limitations. This study was 
limited to a 50 ms window increment since that was as fast 
as the current virtual environment could be rendered. This 
increment may have been too long to see benefit with 
majority vote. With a smaller window increment, a larger 

majority vote queue could be used, thereby increasing the 
benefit of a voting scheme without a large increase in 
additional controller delay, but this remains to be tested. 
 The results also are for a limited number of non-amputee 
subjects with relatively low classification errors. Further 
testing is necessary to see if similar results are found with 
individuals with an amputation who may have higher error 
rates during real-time pattern recognition control. 

V. CONCLUSION 

Even with low classification errors, real-time pattern 
recognition control is affected by movement 
misclassifications. This study demonstrated that the post-
processing method of using a decision-based velocity ramp 
improved real-time control compared to using majority vote 
or no post-processing. Since the velocity ramp was 
independent of the decision stream and did not add an 
additional controller delay, it has the potential to be used 
with a wide variety of pattern recognition settings (e.g. 
different classifiers, window lengths, window increments, 
etc) to improve real-time control. 
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