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Abstract— Few studies have focused on proportional control
with  multi-channel electromyographic (EMG) pattern
recognition systems. In a simple proportional control
algorithm, movement speed is often calculated by averaging the
mean absolute values of all EMG channels. The aim of our
study was to compare the performance of two types of pattern
recognition control (simple proportional and binary on/off) to
direct proportional control. Six EMG channels were collected
from non-targeted forearm muscles of four healthy subjects.
Subjects were prompted to perform eight medium force
isometric repetitions of the following contractions: wrist
flexion/extension, wrist pronation/supination, hand open/close,
and no movement (rest). Control performances were measured
during a one-dimensional position-tracking task using a
custom-made graphical user interface. The results show that a
simple proportional control algorithm for the pattern
recognition system outperformed binary on/off control and was
comparable to the performance achieved with direct
proportional control.

I. INTRODUCTION

The concept of myoelectric control originated in the late
1940s and since then, various implementation strategies
have been devised [1]. Direct proportional control and
binary on/off control are two methods often used in clinical
setups. In a typical direct proportional control setup,
electrodes are placed on an agonist/antagonist muscle pair
and the amplitude envelopes of the electromyographic
(EMQG) signals are used to determine when and at what
speed the device operates. In binary on/off control, the
amplitude envelopes of the EMG signals are compared to
thresholds and when the thresholds are exceeded the device
operates at one speed. The thresholds and speed of activation
are configured by a clinician during the fitting process.
These types of control have been investigated extensively
[1] and received widespread clinical implementation.

EMG-based pattern recognition control systems can
discriminate between many degrees of freedom (DOF) and
have shown promising results in laboratory experiments [2-
4] but have yet to be clinically implemented. Few studies
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have focused on using proportional control with multi-
channel EMG pattern recognition systems [5], and the lack
of a robust proportional control algorithm is a barrier to
clinical implementation. A simple weighted average of the
mean absolute value (MAYV) of all measured EMG channels
has been proposed as a pattern recognition proportional
control algorithm; however, its performance has not yet been
quantified.

II. METHODOLOGY

Four non-amputee subjects participated in this study. The
Northwestern  University Institutional Review Board
approved the experimental procedure and each subject
provided informed consent prior to participating in the
experiment.

Six bipolar surface EMG channels were positioned at
equidistant locations around the circumference of the
forearm approximately one-third of the distance from the
elbow to the wrist and proximal to the elbow. Subjects were
prompted to perform eight medium force isometric
repetitions—with arm and hand both constrained in a custom
built brace— of the following seven contractions: wrist
flexion/extension (WFE), wrist pronation/supination (WPS),
hand open/close (HOC), and no movement (rest). Each
contraction was held for 3 s and the data were divided such
that 12 s of each class were used for training, and 12 s of
each class were used to compute offline classification error.
EMG signals were amplified using a Deslsys Bagnoli 16
EMG system and sampled at 1 kHz using a 16-bit National
Instruments DAQ.

A feature set composed of four time domain statistics was
used to process the data. The feature set (number of zero
crossings, waveform length, number of slope sign changes,
and mean absolute value for a given data window) has been
used previously in real time EMG control schemes [2, 6].
The data were segmented into frames of 150 ms from which
these features were computed. Overlapping frames were
used and frames were incremented at 40 ms. The features
from each channel were then concatenated into an aggregate
feature vector and used as inputs to a linear discriminant
analysis (LDA) classifier; this feature set classifier has been
shown to yield high classification accuracies [2, 6].

A custom-made graphical user interface (GUI) to perform
a tracking task, modeled after Corbett et al. [7], was
implemented in MATLAB (Mathworks Inc., Natick, MA).
In this tracking task, subjects had real-time control of a red
cursor and were instructed to trace a target waveform that
scrolled across the screen (Figure 1). The cursor represented
the joint position and not joint velocity. The maximum
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position that the cursor could move in each frame was set to
4 degrees, which corresponded to a movement speed of 100
degrees per second. This value was chosen based on pilot
experiments.

Wrist Flexion
/\

Wrist Extension

<+——— 2 second preview —-—I

Figure 1. Example of GUI implemented through MATLAB that
displays the tracking test modeled after Corbett et al [7].

The classifier was trained to recognize all degrees of
freedom but the tracking experiment was performed on each
DOF separately; if the classifier output decisions
corresponded to other DOFs the red cursor did not move.
Subjects aimed to trace a 0.8 Hz band-limited Gaussian
white noise waveform. Subjects were allowed three practice
sessions—one for each DOF—before testing to familiarize
themselves with the tracking task prior to evaluation. Each
DOF was tested twice for a total of six trials for each type of
control. Trials were 35 seconds long but only the last 10
seconds of each trial was analyzed because it took time for
subjects to achieve steady-state tracking performance.

Three types of control were tested, including direct
proportional control, pattern recognition with binary on/off
control, and pattern recognition with a simple proportional
control algorithm.

Direct  Proportional  Control: ~ Only the  wrist
flexion/extension DOF was tested using direct proportional
control. In this setup, two of the six EMG channels were
used; one directly over the forearm flexor muscle group and
one directly over the extensor muscle group. Movement
speed was calculated as the MAV of the higher of the two
EMG channels.

Gains and thresholds were adjusted manually such that
subjects’ average contraction resulted in a nominal speed. In
this work, the nominal speed was chosen to be 50% of the
maximum speed or 50 degrees per second. By performing a
lighter or harder muscle contraction, subjects could move at
slower and faster speeds.

On/off Pattern Recognition Control: For this setup, the
cursor was either at rest, or moved at a constant speed.
During pilot work, we noted that subjects preferred a slower
maximum movement speed than what was used for direct
proportional control. Consequently, the maximum cursor
speed for on/off control was reduced to 50 degrees per
second. The subjects felt that this was a comfortable speed at
which to move the cursor.

Simple Proportional Pattern Recognition Control: During
simple proportional control, movement speed was a function
of the MAV of the EMG channels. Class-specific
proportional output was calculated according to the

following formula:
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Where O; is the output speed of class j; G; is the applied
class gain; 7; is the applied class threshold, M4V is the mean
absolute value of channel i for the current, real-time
computation window, and ¥ is the total number of channels.

Similar to direct proportional control, gains and thresholds
were manually configured such that subjects’ average
contraction resulted in 50% of the maximum movement
speed. By performing a lighter or harder muscle contraction,
subjects could move at slower and faster speeds.

The primary metric used to evaluate tracking task
performance was root mean square (RMS) error. The RMS
error is calculated using the following equation:

RMS Error = )

Where Ay is difference between the subject’s cursor
position and the target waveform position at time k, and 7T is
the total number of frames that were analyzed. The RMS
error was normalized by dividing the RMS error by the RMS
value of the target waveform. A linear mixed effects model
was created to complete a statistical analysis. The RMS error
was the response variable; the trial, proportional control
algorithm type, and DOF were set as fixed effects; and the
subject was set as a random effect.

The offline classification error of the pattern recognition
system was computed. This is defined as the proportion of
correct decisions that the classifier made when the 12
seconds of labeled test data were evaluated. The real-time
classification accuracy—termed the real-time efficiency—
was also computed by analyzing the tracking files. The
subjects were attempting to control a single DOF during
each tracking trial. The real-time efficiency was the
proportion of time the classifier made a decision
corresponding to the DOF being tracked.

III. RESULTS

Average pattern recognition classification error was 1.3%
for all subjects. Table I displays a confusion matrix of the
offline classification errors, grouped by DOF. Figure 2
displays example tracking performance of the wrist
flexion/extension DOF for one subject across all three
control schemes.

The linear mixed effects model showed significant
differences (p<0.05) between direct control, simple
proportional pattern recognition control, and on/off pattern
recognition control. Direct control performed best, followed
by simple proportional control and on/off control (Figure 3).
The linear mixed effects model also showed that the DOF
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was a significant factor (p<0.05). Subjects did not track wrist
supination/pronation as well as wrist flexion/extension or
hand open/close.

Table 1.
Confusion matrix showing the distribution of offline classification
errors. The same LDA classifier was used in both the on/off and simple
pattern recognition tracking experiments. The values are averaged over
the four subjects. A perfectly accurate system would have 100s on the
diagonal and 0s elsewhere.

Predicted DOF

WFE WPS HOC
§ wre[ 96 25 1.5
o Wps 100 0
o
& Hoc 0 100

A. Direct Control

Figure 2. Example trials of the wrist flexion/extension DOF for: A)
direct proportional control condition, B) on/off pattern recognition
control condition, and C) simple proportional pattern recognition
control condition. The target waveform is the dashed line and the
subject’s tracking performance is the solid line.

B Direct
3 On/Off Pattern Recognition
[J Simple Proportional Pattern Recognition

Normalized
RMS
Tracking
Error
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Figure 3. Normalized RMS tracking error for each DOF and control
method. Error bars denote one standard error about the mean

Tables II and III show confusion matrices of the real-time

efficiency for the simple pattern recognition proportional
control and on/off pattern recognition proportional control.

IV. DISCUSSION

Direct proportional control has been used clinically for many
years. It is straightforward to map amplitude of single EMG
channel to speed along a single degree of freedom. In this
experiment, only two direct proportional control sites were
localized. Consequently, the direct control tracking
experiment was completed for the wrist flexion/extension
DOF because it was a physiologically appropriate DOF
which generated independent EMG signals at the direct
proportional control sites. Pattern recognition systems
usually use multiple EMG channels to determine which
DOF is being activated. Consequently, it is not appropriate
to map the amplitude of a single channel to the speed of
actuation, but proportional control is still a desirable
characteristic.

Table II.

Confusion matrix showing the real-time efficiency of the simple
pattern recognition proportional control scheme. The values are
averaged over the four subjects. A perfectly efficient system would have
100s on the diagonal and 0s elsewhere.

Predicted DOF

W WFE WFS HOC
Q wre[ 47 34 19
2 wpes| 0 93 7
e
g HoC 28 70
=

Table III.

Confusion matrix showing the real-time efficiency of the on/off
pattern recognition control scheme. The values are averaged over the
four subjects. A perfectly efficient system would have 100s on the
diagonal and 0s elsewhere.

Predicted DOF

w WFE WES HOC
Q wre[ 40 40 20
2 wes| 0 93 7
o
9 Hoc| o 33 67
=

The results demonstrate that pattern recognition-based
proportional control can be achieved using a simple
weighted average of the MAV of all channels. Such a system
performs better than the on/off control method but does not
perform as well as direct proportional control. Although the
simple proportional control algorithm used in the current
study resulted in a similar level of performance as direct
proportional control for wrist flexion/extension, a more
advanced algorithm may provide additional benefits for
other DOFs. Manual adjustment of gains was a subjective
process and relied heavily on the skill of the experimenter.
With pattern recognition, however, EMG data for each
movement is already collected and stored. An enhanced
proportional control algorithm utilizing this data may be able
to automatically calculate these individual class gains
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thereby reducing the clinical configuration time.

There were large differences between the offline
classification accuracies and the real-time efficiencies. The
pattern recognition experiments were performed using a
LDA classifier. This classifier has been shown to be
computationally efficient and to produce the same
classification accuracies as more complex, nonlinear
classifiers [8] during offline experiments. We believe that
the muscle activation patterns crossed decision boundaries in
feature space when users modulated the force of their
contractions. This behavior has been observed in a previous
pattern recognition study investigating the relationship
between accuracy and muscle contraction force [8]. The
current classifier appeared to be very sensitive to the wrist
pronation/supination DOF; there were many wrist
pronation/supination misclassifications when the user
attempted to control wrist flexion/extension and hand
open/close. This highlights a major challenge when
implementing proportional control for pattern recognition
systems; the system must remain accurate when users
attempt to modulate the actuation speed of the prosthesis. In
our test, the cursor remained stationary if an erroneous
decision was made, as shown by flat regions in Figure 2B
and 2C.

The pattern recognition training and testing data were
collected when subjects made repeatable ‘medium’ force
isometric contractions to the best of their ability. The precise
force of the contraction was not measured, nor was any
feedback provided to the subjects. In future work, we will
instruct subjects to modulate the force of the contractions
during training data collection and determine the
classification accuracy and real-time efficiency relationship.
We hypothesize that data collected during modulated force
contractions will improve tracking performance and yield a
classifier with higher real-time efficiency.

This experiment had limitations that should be taken into
account. The subjectivity of adjusting control gains may
have affected user performance during the tracking task. To
reduce this effect, one experimenter set up the control for all
subjects across all conditions. In addition, on/off pattern
recognition control used slower speeds (i.e. another type of
gain) compared to the two other control schemes. This
slower maximum speed may have resulted in lower RMS
error for on/off control. Subject performance may have also
been affected by learning. At the end of the experiment,
subjects noted that they could perform the tracking task
better, regardless of the control scheme. Increasing practice
durations and/or varying tracking frequencies may have
resulted in RMS error values more similar to previous
studies [7]. The pattern recognition training data were
collected from medium, isometric force contractions. We
expect that data collected from a variety of different force
levels would improve the real-time efficiency of the
classifier [8]. We believe that this would also improve the
tracking performance that the users could achieve.

Finally, the results are for a limited sample of non-
amputee subjects with normal musculature. Further testing is
necessary to see if pattern recognition proportional control
can also be achieved by amputees.

V. CONCLUSION

This demonstration of proportional control reduces one
more barrier to the clinical implementation of multi-channel
EMG pattern recognition. Proportional control is necessary
to allow users to perform fine or gross movements with ease.
The simple control algorithm tested in this study allows for
these types of movements, but did not perform as well as
direct proportional control. An enhanced algorithm that
reduces the clinical configuration burden and further
improves tracking ability is desirable.
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