
 
 

 

 

Abstract— Few studies have focused on proportional control 
with multi-channel electromyographic (EMG) pattern 
recognition systems. In a simple proportional control 
algorithm, movement speed is often calculated by averaging the 
mean absolute values of all EMG channels. The aim of our 
study was to compare the performance of two types of pattern 
recognition control (simple proportional and binary on/off) to 
direct proportional control. Six EMG channels were collected 
from non-targeted forearm muscles of four healthy subjects. 
Subjects were prompted to perform eight medium force 
isometric repetitions of the following contractions: wrist 
flexion/extension, wrist pronation/supination, hand open/close, 
and no movement (rest). Control performances were measured 
during a one-dimensional position-tracking task using a 
custom-made graphical user interface. The results show that a 
simple proportional control algorithm for the pattern 
recognition system outperformed binary on/off control and was 
comparable to the performance achieved with direct 
proportional control.  

I. INTRODUCTION 

The concept of myoelectric control originated in the late 
1940s and since then, various implementation strategies 
have been devised [1]. Direct proportional control and 
binary on/off control are two methods often used in clinical 
setups. In a typical direct proportional control setup, 
electrodes are placed on an agonist/antagonist muscle pair 
and the amplitude envelopes of the electromyographic 
(EMG) signals are used to determine when and at what 
speed the device operates. In binary on/off control, the 
amplitude envelopes of the EMG signals are compared to 
thresholds and when the thresholds are exceeded the device 
operates at one speed. The thresholds and speed of activation 
are configured by a clinician during the fitting process. 
These types of control have been investigated extensively 
[1] and received widespread clinical implementation.  

EMG-based pattern recognition control systems can 
discriminate between many degrees of freedom (DOF) and 
have shown promising results in laboratory experiments [2-
4] but have yet to be clinically implemented. Few studies 
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have focused on using proportional control with multi-
channel EMG pattern recognition systems [5], and the lack 
of a robust proportional control algorithm is a barrier to 
clinical implementation. A simple weighted average of the 
mean absolute value (MAV) of all measured EMG channels 
has been proposed as a pattern recognition proportional 
control algorithm; however, its performance has not yet been 
quantified. 

II.   METHODOLOGY 

Four non-amputee subjects participated in this study. The 
Northwestern University Institutional Review Board 
approved the experimental procedure and each subject 
provided informed consent prior to participating in the 
experiment.  

Six bipolar surface EMG channels were positioned at 
equidistant locations around the circumference of the 
forearm approximately one-third of the distance from the 
elbow to the wrist and proximal to the elbow. Subjects were 
prompted to perform eight medium force isometric 
repetitions—with arm and hand both constrained in a custom 
built brace— of the following seven contractions: wrist 
flexion/extension (WFE), wrist pronation/supination (WPS), 
hand open/close (HOC), and no movement (rest). Each 
contraction was held for 3 s and the data were divided such 
that 12 s of each class were used for training, and 12 s of 
each class were used to compute offline classification error. 
EMG signals were amplified using a Deslsys Bagnoli 16 
EMG system and sampled at 1 kHz using a 16-bit National 
Instruments DAQ.  

A feature set composed of four time domain statistics was 
used to process the data. The feature set (number of zero 
crossings, waveform length, number of slope sign changes, 
and mean absolute value for a given data window) has been 
used previously in real time EMG control schemes [2, 6]. 
The data were segmented into frames of 150 ms from which 
these features were computed. Overlapping frames were 
used and frames were incremented at 40 ms. The features 
from each channel were then concatenated into an aggregate 
feature vector and used as inputs to a linear discriminant 
analysis (LDA) classifier; this feature set classifier has been 
shown to yield high classification accuracies [2, 6]. 

A custom-made graphical user interface (GUI) to perform 
a tracking task, modeled after Corbett et al. [7], was 
implemented in MATLAB (Mathworks Inc., Natick, MA). 
In this tracking task, subjects had real-time control of a red 
cursor and were instructed to trace a target waveform that 
scrolled across the screen (Figure 1). The cursor represented 
the joint position and not joint velocity. The maximum 
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thereby reducing the clinical configuration time. 
There were large differences between the offline 

classification accuracies and the real-time efficiencies. The 
pattern recognition experiments were performed using a 
LDA classifier. This classifier has been shown to be 
computationally efficient and to produce the same 
classification accuracies as more complex, nonlinear 
classifiers [8] during offline experiments. We believe that 
the muscle activation patterns crossed decision boundaries in 
feature space when users modulated the force of their 
contractions. This behavior has been observed in a previous 
pattern recognition study investigating the relationship 
between accuracy and muscle contraction force [8]. The 
current classifier appeared to be very sensitive to the wrist 
pronation/supination DOF; there were many wrist 
pronation/supination misclassifications when the user 
attempted to control wrist flexion/extension and hand 
open/close. This highlights a major challenge when 
implementing proportional control for pattern recognition 
systems; the system must remain accurate when users 
attempt to modulate the actuation speed of the prosthesis. In 
our test, the cursor remained stationary if an erroneous 
decision was made, as shown by flat regions in Figure 2B 
and 2C.  

The pattern recognition training and testing data were 
collected when subjects made repeatable ‘medium’ force 
isometric contractions to the best of their ability. The precise 
force of the contraction was not measured, nor was any 
feedback provided to the subjects. In future work, we will 
instruct subjects to modulate the force of the contractions 
during training data collection and determine the 
classification accuracy and real-time efficiency relationship. 
We hypothesize that data collected during modulated force 
contractions will improve tracking performance and yield a 
classifier with higher real-time efficiency.     

This experiment had limitations that should be taken into 
account. The subjectivity of adjusting control gains may 
have affected user performance during the tracking task. To 
reduce this effect, one experimenter set up the control for all 
subjects across all conditions. In addition, on/off pattern 
recognition control used slower speeds (i.e. another type of 
gain) compared to the two other control schemes. This 
slower maximum speed may have resulted in lower RMS 
error for on/off control. Subject performance may have also 
been affected by learning. At the end of the experiment, 
subjects noted that they could perform the tracking task 
better, regardless of the control scheme. Increasing practice 
durations and/or varying tracking frequencies may have 
resulted in RMS error values more similar to previous 
studies [7]. The pattern recognition training data were 
collected from medium, isometric force contractions. We 
expect that data collected from a variety of different force 
levels would improve the real-time efficiency of the 
classifier [8]. We believe that this would also improve the 
tracking performance that the users could achieve.  

Finally, the results are for a limited sample of non-
amputee subjects with normal musculature. Further testing is 
necessary to see if pattern recognition proportional control 
can also be achieved by amputees. 

V.   CONCLUSION 

This demonstration of proportional control reduces one 
more barrier to the clinical implementation of multi-channel 
EMG pattern recognition. Proportional control is necessary 
to allow users to perform fine or gross movements with ease. 
The simple control algorithm tested in this study allows for 
these types of movements, but did not perform as well as 
direct proportional control. An enhanced algorithm that 
reduces the clinical configuration burden and further 
improves tracking ability is desirable. 
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