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Abstract— The development of cancer diagnosis models and 

cancer discovery from DNA microarray data are of great 

interest in bioinformatics and medicine. In pattern recognition 

and machine learning, a classification problem refers to finding 

an algorithm for assigning a given input data into one of several 

categories. Many natural signals are sparse or compressible in 

the sense that they have short representations when expressed 

in a suitable basis. Motivated by the recent successful algorithm 

developments for sparse signal recovery, we apply the selective 

nature of sparse representation to perform the above 

mentioned classification. In order to find such sparse 

representation we implement an ℓ1-minimization algorithm. 

This methodology overcomes the lack of robustness with 

respect to outliers. In contrast to other classification 

algorithms, no model selection dependency is involved. The 

minimization algorithm is a convex relaxation-like that has 

been proven to efficiently recover sparse signals. To study its 

performance, the proposed method is applied to six tumor gene 

expression datasets and numerically compared with various 

support vector machine methods (SVM). The numerical results 

show that the ℓ1-minimization algorithm proposed performs at 

least comparably and often better than SVMs. 

I. INTRODUCTION 

NA microarray technology is a powerful and efficient 

tool for measuring relative gene activity or expression 

in a variety of applications, and has the potential to 

provide accurate and objective cancer diagnosis due to its 

high performance capability of measuring expression levels 

of tens of thousands of genes simultaneously. 

 The challenging issue in microarray technique is to 

analyze and interpret the large volume of data. One 

statistical technique commonly applied to microarray data is 

classification. Classification problems arise in many 

different applications such as data mining and knowledge 

discovery, data compression, pattern recognition and pattern 

classification, in order to group similar genes in one class so 

that genes within the same class are similar to each other and 

different from genes in other class [4],[13]. 
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 Many engineering and science applications involve 

solving linear inverse problems that are usually ill-

conditioned and for which the use of regularization 

techniques is required to be able to propose useful solutions. 

Recently, regularization via sparsity constraints has become 

very popular, where we look for an approximate solution to 

a linear system of equations, with the requirement that it has 

as few nonzero components as possible. This kind of 

problems can be found in several applications in machine 

learning, image and signal processing, coding and 

information theory, among others. 

 Motivated by the recent successful algorithms proposed 

for sparse signal recovery problems in [1], [7], [14], we 

apply the selective nature of sparse representation to solve 

classification problems. A test sample is represented in an 

overcomplete dictionary with the training samples as base 

elements. In case we have sufficient training samples 

available for each class, test samples can be expressed as a 

linear combination of only those training samples that 

belong to the same class, therefore providing a naturally 

sparse representation. 

Support Vector Machines (SVM) are powerful automatic 

learning structures, based on the statistical theory of 

learning, capable of resolving classification, regression and 

estimation problems. They have been the aim of much 

research in recent years. The method was proposed by V. 

Vapnik [18] in the late seventies for solving pattern 

recognition problems. However, the performance of SVM 

relies upon careful choice of model parameters. Currently, 

SVM is implemented in the GEMS-SVM software [17], for 

automated cancer diagnosis from microarray gene 

expression data. 

This work presents a new method of supervised machine 

learning for classification of tumors using gene expression 

data. Specifically, the strategy for classification consists in 

finding a sparse representation of test samples with respect 

to training samples. The sparse representation is computed 

via ℓ1-minimization. The new method is applied to six tumor 

gene expression datasets and its performance is compared 

with the results obtained from the GEMS-SVM software. 

II. MATERIALS AND METHODS 

A. Dataset 

In this numerical experimentation we use 6 different 

datasets from the GEMS-SVM software, freely available in 

MATLAB .mat format (http://www.gems-system.org/). A 

short description of the datasets used follows: 
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 9_Tumors. The dataset comes from a study of 9 

human tumor types: NSCLC, colon, breast, ovary, 

leukemia, renal, melanoma, prostate, and CNS. 

 11_Tumors. Consists of gene expression data of 11 

various human tumor types: ovary, bladder/ureter, 

breast, colorectal, gastro-esophagus, kidney, liver, 

prostate, pancreas, adeno lung, and squamous lung. 

 Prostate_Tumor. Binary dataset contains gene 

expression data of prostate tumor and normal 

tissues. 

 Lung_Cancer. Dataset of 4 lung cancer types and 

normal tissues. 

 SRBCT. Small, round blue cell tumors (SRBCT) of 

childhood. 

 Brain_Tumor. Dataset from a study of 5 human 

brain tumor types: medulloblastoma, malignant 

glioma, AT/RT, normal cerebellum, and PNET. 

 

In the Table 1, the number of samples and genes for each 

dataset is described. 

 
Table 1. Information about the six datasets. 

Dataset # Samples # Genes # Classes 

9_Tumors 60  5726  9 

11_Tumors 174 12533 11 

Prostate_Tumor 102 10509 2 

Lung_Cancer 203 12600 5 

SRBCT 83 2308 4 

Brain_Tumor 90 5920 5 

 

B. Problem Formulation 

We say that a vector c∈ℝ
n

, has a sparse representation if 

it can be expressed as a linear combination of as few base 

elements as possible from a fixed collection matrix B∈ℝ
m×n

, 

called dictionary. In other words, given a dictionary B∈ℝ
m×n

 

where the columns bi have unit Euclidean norm, we say that 

the vector c∈ℝ
n

, has a k-sparse representation if 

1
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and ||c||0 ≤ k.  

The counting function        ℝ
  ℝ 

  known as the ℓ0 
norm [11], gives the number of nonzero elements in its 

argument. That is, ||c||0 = cardinal{i : ci ≠ 0}.  Even though 

we call it the  ℓ0 norm, one can easily verify that it does not 

satisfy the positive homogeneity (positive scalability) 

property in the definition of a norm, namely we have that      

|| λc ||0 ≠ |λ| ||c||0, for any given nonzero scalar λ. One of the 

research topics in Compressed Sensing consists of finding 

the vector c∈ℝ
n

, such that the ||c||0  is as small as possible, 

subject to some restrictions.  A vector c  is said to be nearly-

sparse if the rearranged entries of c decay rapidly when 

sorted in decreasing order of magnitude. Since compressible 

vectors are well approximated by sparse ones [6], the 

framework of Compressed Sensing applies to this class too. 

In this work, we look for the sparsest vector c satisfying 

an underdetermined linear system of equations Bc = y. 

Formally, we want to solve the following optimization 

problem 

min ||c||0   subject to  Bc = y.      (1) 

 

However, problem (1) is a combinatorial minimization 

problem and NP-hard (non-deterministic polynomial-time) 

[11], and therefore any algorithm that is intended to solve (1) 

given the matrix B and the vector y, will be computationally 

intractable. 

Strategies to overcome this difficulty have been 

developed giving rise to different algorithmic approaches 

with remarkable results in different applications. Convex 

Relaxation approaches where the objective function in 

problem (1) is replaced by the ℓ1-norm convex function [10] 

have been proven to find the sparsest solution to the linear 

system of equations. That is, under some mild conditions 

[7], problem (1) is equivalent to the ℓ1-minimization 

problem: 

min ||c||1   subject to  Bc = y,      (2) 
 

where the ℓ1 norm is defined as 

           

 

   

 

Now we have an optimization problem whose objective 

function is convex, unlike the ℓ0-norm in problem (1). The 

motivation for this approach comes from studying the theory 

of compressed sensing (compressive sampling) which has 

been a research topic of interest in the last years. The work 

in this area initiated in late 2004 by Emmanuel Candès, 

Justin Romberg and Terence Tao [7], and independently by 

David Donoho [10]. The ℓ1 convex relaxation approach has 

been proven to successfully find sparse solutions to linear 

system of equations. 

 

In [1] the authors propose a Path Following Signal 

Recovery (PFSR) algorithm that finds solutions of a 

sequence of linear equality constrained multiquadratic 

problems, depending on a regularization parameter that 

converges to zero, approximating the ℓ1-norm in a 

homotopic manner. Numerical experimentations have shown 

that the PFSR algorithm is capable of recovering sparse 

signals, with results comparing favorably - in both accuracy 

and CPU running time - with the state-of-the-art algorithms 

for finding sparse solutions to linear systems of equations. 

The MATLAB implementation of the PFSR algorithm can 

be found at http://www.math.utep.edu/Student/rsanchez/  

The PFSR algorithm we propose in [1] finds an 

approximate solution of problems of type (2), by solving a 

sequence of subproblems of the form 

    
 

(3) 

 

as the regularization parameter µ goes to zero. The 

algorithm generates two sequence of iterates. The first 

sequence (inner loop) generates a series of iterates for 

obtaining an approximate solution of subproblem (3) for a 

fixed regularization parameter µ>0. The second sequence 
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(outer loop) creates a series of the approximate solutions for 

the subproblems (3) that converges to an optimal solution of 

the ℓ1-minimization problem (2).  

 
Algorithm 1. Path Following Signal Recovery (PFSR) 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 
 

 

In Step 6 of Algorithm 1, s represents the Lagrange 

multiplier associated to the equality constraint in problem 

(3). It is important to notice that in our algorithm, Step 6 is 

reformulated and solved using a specially designed 

Conjugate Gradient (CG) algorithm. Specifically, for a 

current point c-, the first block of equations of the system in 

Step 6, gives c + Dμ(c-)
1/2 

B
T
s = 0, and since Dc = y, we 

obtain the weighted normal equation 

 

B Dμ(c-)
1/2

 B
T
s =  – y      (4) 

 

In order to solve (4) we apply a CG method and then 

compute the new approximation for c as in                            

c = – Dμ(c-)
1/2

 B
T
s. 

The initialization parameters σ, τ, μ, and ϵ1 are used for 

defining the tolerance and regularization parameter within 

the algorithm. 

 

C. Classification Problem 

Let us consider a training dataset {(xi, ti) : i=1,…, n}, 

xi∈ℝ
d

, ti ∈{1, 2,…, N}, where n is the number of samples 

and N the number of classes. The vector xi represents the i-

th sample, containing gene expression values and ti denotes 

the label of the i-th sample.  

The sparse representation problem is formulated as 

follows: For a testing sample y∈ℝ
d

, find the sparsest 

representation from the training dataset. That is, 

 

min ||c||0              (5) 

s.t   c1x1+ c2x2+…+ cnxn =  y.                              

We show that indeed a valid test sample y can be 

represented using only the training samples from the same 

class, therefore inducing a sparse representation 

Let us rearrange the given ni training samples from the   

i-th class as the columns of a submatrix                                

Ai = [xi, 1, xi, 2, …, xi, ni
] ∈ℝ

d×n
i. That is, we group all those 

samples with the same label into a submatrix Ai. In case we 

have sufficient training samples of the i-th class, any test 

sample y from the same class will be represented as a linear 

combination of the training samples associated with class i:  

 

y  =  ci,1x i,1+ ci,2x i,2+ … + ci,ni
xi,ni

 ,   (6) 

for some values of ci,j∈ℝ, j = 1,…,ni. Now, making use of 

the whole training data set, we define the matrix A of size 

d×n by concatenating all of the n training samples of the 

different N classes, that is A = [A1, A2, …, AN]. Then, the 

linear representation of the test sample y can be rewritten 

using all training samples, as in y = Av, where                      

v = [0, …,0, ci,1, ci,2, …, ci,ni
, 0, …, 0 ]

T
∈ℝ

n

  is the vector 

whose entries are all zero except for those associated with 

the i-th class. We emphasize that for practical problems, the 

matrix A does not have to be rearranged, since the sparse 

representation will identify the nonzero components we are 

interested in. 

We consider a construction error vector e on the 

measurements; therefore we obtain the following 

underdetermined linear system  

 

Ac + e = y.          (7) 

 

This system can be rewritten as Bd = y,
 
where  

 

B = [A, I],  d = [c, e]
T
. 

 

Here I represents the d×d identity matrix, B∈ℝ
d×(d+n)

,        

and d∈ℝ
n+d

. 

     Now to find the solution to the sparse representation 

problem, we solve the ℓ1-norm minimization problem 
 

min ||d||1              (8) 

s.t   Bd =  y,            
       

for a given testing sample y. One of the advantages of this 

formulation is that robustness with respect to outliers and 

noise in the dataset is gained when using the ℓ1-norm [3], 

[9].  Also, we do not need to care for model selection, as in 

support vector machine approaches, since we take advantage 

of the selective nature of the sparse representation approach 

in order to perform classification. 

 

D. Discriminant Functions and Classifier 

Once the sparse vector ĉ has been found as the solution to 

(8), we identify the class to which the testing sample y 

belongs. The approach consists in associating the nonzero 

entries of ĉ with the columns of A corresponding to those 
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training samples having the same category of the testing 

sample y.  

The solution vector ĉ is decomposed as the sum of d-

dimensional vectors ĉk, where ĉk is obtained by keeping only 

those entries in ĉ associated with category k and assigning 

zeros to all the other entries. Later, we define the N 

discriminant functions 

 

gk (y) = || y – A ĉk ||2,    k = 1,…, N.   (8)  
 

Thus gk represents the approximation error when y is 

assigned to the category k.  Finally we classify y in the 

category with the smallest approximation error. That is 

 

t  = arg min 
k = 1,…, N

  gk (y).         (9)  

 

E. K-fold-cross Validation 

Performance is commonly measured by the error rate of 

the classifier on the entire population. Cross validation is a 

statistical method for evaluating machine learning 

algorithms in which the data is divided in two sets: one used 

for the training stage, and the second one used for testing 

(validation). These two training and testing sets should 

cross-over in consecutive rounds in such way that each 

sample in the data set has a chance of being validated. 

In the case of K-fold cross validation, a K-fold partition 

of the dataset is created by splitting the data into K equally 

(nearly equal) sized subsets (folds), and then for each of the 

K experiments, K-1 folds are used for training and the 

remaining one for testing. A common choice for K-fold 

cross-validation is K = 10 (see [15]). 
 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Fig. 1. A 10-fold cross validation partition for a binary dataset 

III. RESULTS 

We solve the classification problem using the solution of 

the sparse representation in (6). The matrix A is built using 

the dataset elements, and for our numerical experiment we 

normalize the columns of A in such a way that they all have 

unit norm.  

The PFSR algorithm is applied to solve each of the 

problems of the form (6), which are needed at every iteration 

of a 10-fold cross-validation test. The PFSR algorithm and 

the complete validation experiment for each dataset are 

implemented in MATLAB. Notice that even though in our 

problem formulation we use the augmented matrix               

B = [A, I], we do not need to store the complete matrix B 

but only A since  
 

B d = Ac + e,              (9) 

B
T 

y = [A
T
y, y]

T
.             

 

Thus, we implement in a fast way the matrix-vector 

multiplications operations required by the PFSR algorithm. 

With this strategy we are able to estimate the error vector on 

the measurements, which can be also used to identify those 

genes that may correspond to biological markers. The 

method used in [12] uses an ℓ1-regularized least squares 

algorithm, with a regularization parameter that must be 

carefully chosen to balance the tradeoff between sparsity and 

reconstruction error. 

We compare our numerical results using the Sparse 

Representation (SR) approach proposed in this work with 

the classification method of Support Vector Machines 

(SVM) in [18].  Support vector machines are a set of related 

supervised learning methods that analyze data and recognize 

patterns, used for classification and regression analysis. The 

original SVM algorithm was invented by Vladimir Vapnik 

and the current standard implementation was proposed by 

Corinna Cortes and Vladimir Vapnik [8]. In order to perform 

this comparison, we use the software GEMS-SVM which 

has implemented several multiclass SVMs including one-

versus-rest (OVR), one-versus-one (OVO), and directed 

acyclic graph (DAG). Polynomial and radial basis functions 

(RBF) kernels can also be used. For SVM, we report the best 

numerical result obtained from the different combinations 

available.  

In Table 2 we show the performance measure results for 

each of the datasets tested in this experimentation, where the 

error rate of the classifier is computed and compared. 

 
Table 2. Classification results for SR and SVM 

Dataset SR SVM 

9_Tumors 66.67% 67.01% 

11_Tumors 96.55% 94.99% 

Prostate_Tumor 94.12% 93.27% 

Lung_Cancer 95.07% 96.05% 

SRBCT 100% 100% 

Brain_Tumor 91.11% 90% 

 

 

 The Sparse Representation (SR) results reported in Table 

2 are encouraging when compared with the SVM approach 

for classification problems. We can see that SR meets the 

best performance reached by SVMs method.  

   We also see the low rate of accuracy for the dataset 

9_Tumors which is probably related with the number of 

samples available, since from a total of 60 samples only 2 

are available for category 7 corresponding to the prostate 

tumor case.  This contrasts with the 9 samples available for 

non-small cell lung cancer (NSCL); 8 samples for breast, 

renal and melanoma cases; 7 for colon and 6 for ovarian, 

leukemia, and central nervous system (CNS) cases. 
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Therefore, in the situation when the only two samples 

available for category 7 happen to be in the testing dataset, 

generated by the random 10-fold cross validation stage, we 

will not have any samples of this category for training, i.e., 

these samples do not have any natural sparse linear 

representation using those elements in the training dataset. 

 

 In Figure 2, the sparse representation for the last cross-

validation experiment on the binary dataset Prostate_Tumor 

is presented. One can notice the contrast between the large 

and small coefficients of the solution vector c, suggesting 

that the given test sample belongs to exactly one of the two 

classes in this dataset. In this case, the last test sample 

corresponds to one of the prostate tumor samples which are 

represented in red color, while the normal tissue samples are 

shown in blue. This fact confirms the idea of expressing any 

test sample as a linear combination of only those training 

samples belonging to the same class. 

 

 
 

Fig. 2. The sparse representation of a given test sample. 

 

IV. CONCLUSION 

 In this work, we have presented a new method of 

supervised machine learning for classification via ℓ1-

optimization. Through the ℓ1-optimization it is possible to 

obtain a sparse representation of each testing sample as a 

linear combination of all the training samples, so the sparse 

representation approach does not contain separate training 

and testing stages. The advantage of the sparse 

representation technique based on ℓ1-optimization is 

twofold:  it is not necessary to care for model selection as in 

SVM, and on the other hand robustness with respect to 

outliers and noise is gained using the ℓ1-norm. The 

numerical results obtained show that the performance of the 

proposed method is comparable with or better than that 

obtained from the GEMS-SVM software. 

Since the treatment of cancer greatly depends on the 

accurate classification of tumors, the development of 

numerical techniques from data mining like the one 

presented in this work could be used in the process of 

classification using gene expression data, and has the 

potential to provide a more accurate and objective cancer 

diagnosis.  
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