
  

 

Abstract—This paper introduces an algorithm for the 

automated diagnosis of referable maculopathy in retinal images 

for diabetic retinopathy screening. Referable maculopathy is a 

potentially sight-threatening condition requiring immediate 

referral to an ophthalmologist from the screening service, and 

therefore accurate referral is extremely important. The 

algorithm uses a pipeline of detection and filtering of “peak 

points” with strong local contrast, segmentation of candidate 

lesions, extraction of features and classification by a multilayer 

perceptron. The optic nerve head and fovea are detected, so 

that the macula region can be identified and scanned. The 

algorithm is assessed against a reference standard database 

drawn from the Birmingham City Hospital (UK) diabetic 

retinopathy screening programme, against two possible modes 

of use: independent screening, and pre-filtering to reduce 

human screener workload. 

I. INTRODUCTION 

IABETIC retinopathy is a leading cause of blindness 

affecting 95% of type 1 diabetics within 15 years of 

onset [1], of whom 2% may become blind and 10% suffer 

severe visual impairment. Annual screening is recommended 

to identify progression allowing early treatment, which may 

prevent up to 90% of cases of blindness [2]. Grading 

standards for screening include background and sight-

threatening retinopathy, the latter being particularly 

important to detect reliably. A major category of sight-

threatening retinopathy is referable maculopathy, which may 

be defined as the presence of one or more exudates or three 

or more HMAs (Haemorrhages or microaneurysms) within 

the macula region – that is, within an optic disk diameter of 

the centre of the fovea. 

This paper introduces an algorithm for the detection of 

referable maculopathy, and evaluates it against a reference 

dataset taken from a diabetic retinopathy screening 

programme. The algorithm grades the image to ensure it is 

sufficiently clear to permit lesion detection, detects and 

measures the optic nerve head (ONH), finds the fovea, then 

detects and counts exudates and HMAs (hemorrhages and 

microanerysms). It is evaluated for two modes of use: first, 

as a standalone system replacing the human grader; second, 

as a pre-screening stage that identifies and discards clearly 
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non-referable patients, passing on all positives and a 

proportion of negatives to a human screener. 

II. BACKGROUND 

There is a substantial literature on analysis of retinal images 

relevant to screening for diabetic retinopathy. Space 

precludes a detailed discussion here; a good survey is 

presented in [3]. The majority of this literature relates to the 

segmentation of key features including exudates, HMAs, 

ONH and fovea; however, there is relatively little that 

addresses the diagnosis of retinopathy using these features. It 

is worth noting that studies of segmentation and 

classification algorithms evaluated on a per lesion basis are 

difficult to interpret for two reasons: the datasets used 

critically affect performance as diabetic screening program 

images often include unclear and difficult to classify images 

and lesions; and the step from lesion identification to patient 

diagnosis is non-trivial. 

Hipwell [4] and Larson [5] developed systems to diagnose 

retinopathy by detection of HMAs alone, relying on the 

prevalence of these to compensate for the lack of explicit 

detection of exudates or other signs. Usher [6] combined 

detection of exudates and HMAs. Abrahamoff [7] combined 

white lesion, HMA and image quality enhancement. Philip 

[8] evaluated an automated system that combined MA 

detection and image quality analysis, designed to detect 

presence of absence of any retinopathy (whether background 

or referable) against a large dataset of 6722 patients in a 

retinal screening programme. They report 97.9% sensitivity 

and 67.4% specificity for detection of referable/observable 

retinopathy or maculopathy (compared to 99.1% sensitivity 

and 67.4% by manual screening). Although system 

performance is far short of manual screening, if used to pre-

filter patients the system potentially allows a 60% decrease 

in manual screening; the cost saving for the Scottish NHS 

being estimated at £200,000 per annum [9]. More recently, 

they have investigated a system that combines HMA and 

exudate detection, showing that detecting both and 

combining evidence gives better results than MA alone [10]. 

This system uses a weighted sum of evidence from several 

sources, including multiple lesion candidates and taking into 

account their position with respect to the fovea. 

Lesion detection algorithms use a range of techniques. First, 

potential lesion areas must be segmented, typically by 

contrast enhancement and thresholding [11], Fuzzy C Means 

[12] region growing [13] or filtering techniques [11]. Some 

authors assume any segmented region is a lesion-of-interest. 
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Others, recognizing that retinal images often contain benign 

distractors (e.g. drusen, light artifacts, visually broken-up 

tiny blood vessels, choroidal vessels) use a second stage 

[6,12] where features are extracted and a more sophisticated 

classifier determines whether a segmented region is actually 

a lesion. In our experience the latter approach provides 

higher levels of per-lesion performance and thus ultimately 

better subserves diagnosis of diabetic retinopathy. 

III. REFERRABLE MACULOPATHY SCREENING ALGORITHM 

We use two macular-centred images, one from each eye of 

the patient; images are converted to grey-scale by extracting 

the green component. We detect and measure the optic nerve 

head using the algorithm described in [14]. Then, the fovea 

is located by selecting the maximum correlation point with a 

40 40 Gaussian filter with standard deviation    22 pixels 

[15]. The image clarity is checked to determine if it is 

gradeable using the algorithm presented in [16], which 

yields a quality metric on a scale of 1-5. If the image is 

gradeable (quality 1-3 corresponds to “machine gradeable”), 

we locate retinal lesions using the algorithm below. 

1. Candidate points. We detect peak points – pixels that 

have (for white lesion detection) intensity at least as high as 

their four-connected neighbors. There is guaranteed to be at 

least one peak point in any white lesion. This stage typically 

produces several thousand candidate points. 

2. Winnowing. We rate the “lesionness” of each candidate 

point by using a robust local contrast measure. We calculate 

the maximum contrast between the peak point and eight 

circular regions,    radius                               , 
each one pixel wide. We represent each circular region using 

the lightest pixel value, and choose the darkest such value, 

so calculating the highest contrast between peak and circular 

maximum; see equations (1) and (2):  

                } 

 

(1)  

             } (2)  

Where    is the intensity of pixel  ,    is the intensity of the 

peak point, and l is the lesionness measure. This process 

exploits the observation that for a real lesion it should be 

possible to draw a circle around the lesion that is wholly 

contained in the background retina, and therefore has strong 

contrast to the peak from all its pixels. We extract the fifty 

candidate white lesions with the highest lesionness measures 

for further analysis. An analogous process is used to identify 

fifty dark lesion candidates, using “trough” points and 

reversing the minimum and maximum operators in equations 

(1) and (2) to calculate the lesionness measure. This 

algorithm is related to the morphological hit-and-miss 

procedure for lesion detection [17]. 

3. Segmentation. We attempt to segment the candidate, 

bearing in mind that real lesions may be small, blurred 

and/or have low contrast, and that non-lesions may be highly 

irregular shaped noise patches. We used a specialized variant 

of region growing that grows to and beyond the candidate 

boundary, and then exploits the expected shape 

characteristics to identify the correct segmentation. In brief, 

the algorithm starts from the peak point and grows the 

candidate lesion by acquiring (for white lesions) the 

brightest neighboring pixel. Having first calculated a 

smoothed gradient magnitude image using (3), we then 

compute (on each iteration) a gradient contrast measure 

using (4-6):  
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where    is the gradient contrast measure on iteration i,      

is the gradient magnitude image smoothed with a Gaussian 

filter,    is the candidate region at iteration i,   is a     

structuring element,   is the morphological dilation 

operator,     is the boundary region at iteration i,    is the 

iteration weight and    is the cardinality (number of 

elements) of set X. The iteration weight    compensates for 

the fact that earlier iterations, which involve few pixels and 

prominently include the peak point, may demonstrate very 

high contrast due to noise. 

On each iteration we also calculate a compactness measure: 
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We run the region growing algorithm for a maximum of 250 

iterations, or until      . As lesions are reasonably 

compact, the latter condition invariably occurs when a non-

lesion candidate is being segmented, leading to a highly 

convoluted shape, at which point there is no value in 

continuing the region growing. 

Then, we select the iteration with the highest value of   , 
and this indicates the correct lesion segmentation,   
                . As shown in [18], this approach 

segments the lesion with great accuracy, which in turn is 

critical in ensuring that the features extracted in the next 

stage are effective. We then define the lesion boundary, 

         and interior,       , where   is the 

morphological erosion operator. 

For dark lesions the algorithm works just as above, except 

that we acquire the darkest neighbor during region growing.   

4. Feature extraction. We extract features that help to 

distinguish lesions from non-lesions. These features 

characterize the shape, colour and texture of the candidate, 

and the contrast between it and the surrounding retinal 

background. Our approach is to extract a wide range of 

features, then to use feature selection techniques to reduce 

the number used by the classifiers. The full set of features 

extracted includes the following. 

Shape features. We extract from   the area (number of 

pixels), perimeter (in pixels), equivalent diameter (of circle 

of this area), major and minor axis length, eccentricity 

(minor/major axis length), convex area (area of convex 

hull), solidity (area/convex area) and compactness. 

Contrast measures. We extract the contrast-of-means 

between   and  , and between    and  , separately for 

each of the Hue, Saturation and Luminosity (Intensity) 
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channels of the HSI colour representation. We also use the 

maximum contrast,          from the region growing 

phase. Lesions typically have strong contrast with the 

surrounding retinal background. Note that these features are 

critically dependent on good segmentation. 

Color features. We analyze the components of the RGB, 

HIS and CIE color models separately. For each of these, we 

determine the mean, standard deviation, skew and kurtosis 

of  . 

Texture features. We characterize the texture of   using co-

occurrence matrix features. We discretize to four intensity 

bins (each containing 25% of values), producing     co-

occurrence matrices; four such matrices are formed for right, 

down, down-right and down-left directions respectively. We 

then extract five features from each co-occurrence matrix: 

the energy, correlation, contrast, homogeneity and entropy: 
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where        is the probability of co-occurrence of i
th

 row 

and j
th

 column,          and     are the means and standard 

deviations of the row and column marginal probabilities. We 

take the mean, standard deviation, skew and kurtosis of the 

Fourier transform of the green channel in a       tile 

centred at the peak point, and the first 10 principal 

components of the Fourier transforms, which may 

characterize periodic texture features. We also apply a 

Prewitt edge detection filter to the       tile, and take the 

mean, standard deviation, skew, kurtosis and first 10 

principal components of this. 

5. Feature selection. We select effective features for 

classification of both white and dark lesions by using a 

hierarchical feature selection strategy, as described in [20]. 

The final selected feature sets contain 58 features for white 

lesions, and 18 features for dark lesions. For brevity we do 

not list these, but note that a selection of the shape, color, 

contrast and texture features above are combined. 

6. Classification. We perform separate classification for dark 

and white lesions. For each of these, we use ten-fold cross 

validation to train Multilayer Perceptron neural networks. 

We used a combination of back propagation (100 iterations) 

and conjugate gradient descent (500 iterations) to optimize 

the networks; each network had one hidden layer with 28 

and 10 hidden units for the white and dark lesion networks 

respectively, these settings being determined empirically. 

The networks are optimized to estimate the posterior class 

probability in the two-class classification problem (lesion or 

non-lesion candidate) using the cross-entropy error function. 

Input features were normalized to range [0,1] using the 

minimax method. We do not attempt to distinguish lesion 

sub-type (e.g. exudates versus drusen) as in this application 

very high sensitivity is required and it is safer to treat all 

lesions as positives. 

7. Diagnosis. Having estimated the probability that each 

candidate is a lesion, we need only to set confidence 

thresholds for white lesions and dark lesions, and we can 

then apply a decision rule to diagnose referable 

maculopathy. In contrast to other authors, we directly follow 

the standard definition of referable maculopathy: we 

diagnose on the basis that one or more exudates (white 

lesions) or three or more dark lesions (HMAs) are identified 

in the macular region in either eye, using the prior ONH 

segmentation and fovea detection algorithms to identify the 

region of interest.  

IV. EVALUATION 

We evaluated the algorithm using 1000 macula-centered 

fundal images from 507 randomly sampled patients of the 

Birmingham City Hospital diabetic screening programme. 

Fourteen patients have only a single image, the balance 

(493) having two (one per eye). Images were acquired using 

a Canon CR6 45MNf fundus camera with a 45 degree field 

of view,         resolution.  86 images were classified as 

ungradeable due to cataract or capture errors, including poor 

illumination. Of the remaining images, 702 (77%) have no 

abnormalities, 212 have some retinopathy (23%) of which 

61 (12%) have referable maculopathy. The images contain 

many distractors; for example, 152 contain benign drusen 

which must be successfully distinguished from exudates. 

The patients were classified by two clinicians who identified 

all lesions within the macular region. Where there were 

disparities (in 130 images) a third clinician (consultant 

ophthalmologist) adjudicated. The adjudications were very 

balanced (54% agreement with the first clinician, 46% with 

the second). It was observed that these cases largely 

correspond to medium quality images making lesion 

classification difficult.  

To evaluate the system for automated screening, we first 

remove all patients with an ungradeable image (on the basis 

that these would necessarily be referred). We set the neural 

network decision thresholds to attempt to achieve UK 

National Screening Committee recommendations of at least 

80% sensitivity and 95% specificity per patient. With this 

decision rule the system achieved 80% sensitivity, 93% 

specificity on gradeable images. The corresponding 

performance for individual white lesion candidates was 91% 

TABLE I 

PRE-FILTER PERFORMANCE WITH DIFFERENT QUALITY THRESHOLDS, 

PER PATIENT 

Se. Sp. TP FN TN FP Ung Scr 

97% 80% 48 1 320 78 47 173 

100% 95% 27 0 298 15 153 195 

Top row: images of quality grade 1-3 (according to [16], equivalent to 
“human-gradeable) processed. Bottom row: images of quality grade 1-2 

processed. Se=Sensitivity, Sp=Specificity, TP=true positive, FN=false 

negative, TN=true negative, FP=false positive, Ung=ungradeable, 
Scr=TP+FP+Ung=patients passed on for human grading. 
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sensitivity and 91% specificity; for dark lesion candidates 

98% sensitivity and 72% specificity. 

For pre-filtering, we set the decision thresholds to achieve as 

close as possible to 100% sensitivity. In this mode the 

system effectively filters out “clearly healthy” images, 

passing on any dubious cases for human screening. We 

achieve (with respect to gradeable images) 97% sensitivity 

and 80% specificity, with a single false positive image (due 

to a medium quality image that is defined as acceptable by a 

clinician, but is sufficiently blurred to prevent our algorithms 

functioning). In this mode of use 173 patients would be 

referred for human screening.  

We can filter out the single false negative image by 

changing the gradeability threshold so that only high quality 

images are analyzed (i.e. using a tighter gradeability 

threshold than is required by a human grader). On this basis 

we achieve 100% sensitivity at 95% specificity on the 

assessed images, although we pass on 153 patients as having 

at least one image unsuitable for automated assessment 

(from 170 unsuitable images), as opposed to 47 patients 

from 86 human-ungradeable images. The very significant 

gain in specificity is noteworthy, indicating that poor image 

quality is a key trigger for misclassification of lesions. Using 

this approach in total 195 patients are referred onto human 

screening – potentially a reduction of 70% in the workload 

compared with human screening of all images. This is 

broadly consistent with the results obtained by Philip [8] for 

“any disease” referral. 

We note however that the evaluation has two limitations. 

First, the number of cases of referable maculopathy is fairly 

small (49 patients), so that we cannot be confident the results 

would carry over at 100% sensitivity to a larger study. 

Second, the study uses images from a single site and camera, 

and it is likely that performance would drop using images 

with different optical characteristics.  

V. CONCLUSION 

This paper has presented an algorithm for automated 

detection of referable maculopathy. The algorithm uses a 

pipeline of progressively more discriminative stages to find 

and classify candidate retinal lesions. The accurate 

segmentation of lesions is critical to the extraction of 

discriminative features. In contrast to other approaches in the 

literature we directly model the referable maculopathy 

screening criteria by counting lesions within the fovea. We 

have demonstrated a high level of performance for 

automated detection of referable maculopathy. For future 

work we will further improve lesion segmentation, feature 

selection and classification, and evaluate performance across 

a wider range of datasets taken from multiple retinopathy 

screening programmes. 
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