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Abstract—Current standard quantitative 3D 
spectral-domain optical coherence tomography (SD-OCT) 
analyses of various ocular diseases is limited in detecting 
structural damage at early pathologic stages. This is mostly 
because only a small fraction of the 3D data is used in the 
current method of quantifying the structure of interest. This 
paper presents a novel SD-OCT data analysis technique, taking 
full advantage of the 3D dataset. The proposed algorithm uses 
machine classifier to analyze SD-OCT images after grouping 
adjacent pixels into super pixel in order to detect glaucomatous 
damage. A 3D SD-OCT image is first converted into a 2D 
feature map and partitioned into over a hundred super pixels. 
Machine classifier analysis using boosting algorithm is 
performed on super pixel features. One hundred and ninety-two 
3D OCT images of the optic nerve head region were tested. Area 
under the receiver operating characteristic (AUC) was 
computed to evaluate the glaucoma discrimination performance 
of the algorithm and compare it to the commercial software 
output. The AUC of normal vs glaucoma suspect eyes using the 
proposed method was statistically significantly higher than the 
current method (0.855 and 0.707, respectively, p=0.031). This 
new method has the potential to improve early detection of 
glaucomatous structural damages.  

Keywords—Super Pixel, 3D OCT, Glaucoma Analysis, 
Retinal Image Processing  

I. INTRODUCTION 

PTICAL coherence tomography (OCT) is a rapidly 
evolving technology in biomedical imaging that gained 

a significant clinical impact in ophthalmology [1]. One of the 
main use of this technology is for detection and follow-up of 
subjects with glaucoma. Glaucoma is an ophthalmic disease 
characterized by gradual structural changes such as thinning 
of the retinal nerve fiber layer (RNFL). OCT RNFL thickness 
measurements provide an important structural analysis tool in 
current clinical glaucoma management. Spectral-domain 
(SD-) OCT’s fast scanning speed allows three-dimensional 
(3D) volume scanning of retinal layers, which may offer more 
detailed and accurate quantitative analysis of the retinal 
structure than ever before. This will likely improve early 
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disease detection and glaucoma progression detection. 3D 
OCT retinal images are composed of a series of 
cross-sectional scans (B-scan; Fig. 1) from top to bottom (in 
x-y plane) of the scanning region on retina. Each B-scan 
consists of certain number of high-resolution 
one-dimensional scans in the z direction (A-scan).  

Although 3D OCT images are widely available, software 
advancements have not improved synchronously with the 
hardware counterparts. The actual OCT structural 
measurements do not take full advantage of the 3D dataset 
(200200 samplings). Only 512 samplings along a 3.4 mm 
circle out of the 40,000 samplings (1.28%) are used in the 
current RNFL thickness analysis [2] (Fig. 2A, red circle). The 
circumpapillary measurement is compared with normative 
database (Fig. 2B) and summarized in 4 quadrants and 12 
clock hours for clinical use (Fig 2C). The early signs of 
pathologic damage may be unnoticed, since the majority of 
the 3D dataset is not sampled (Fig. 2A). Moreover, subtle 
pathologic changes are difficult to detect using pre-defined 
sectors since all the data in each sector is summarized by a 
single index, which is not a sensitive method to assess early 
disease damage. So far, only a few publications regarding 
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Fig. 1: An example of a 3D OCT image. (A) 3D OCT image composed of 
consecutive B-scans, each B-scan consists numerous A-scans. (B) OCT 
fundus image, generated by averaging intensity values of each A-scan. 
(C) Pseudo-color retinal nerve fiber layer (RNFL) thickness map. 
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glaucoma assessment have been using the full 3D OCT 
information. Most SD-OCT devices only provide qualitative 
3D image analysis to compare measurements to normative 
databases with color-coded results as red ("outside normal 
limits"), green ("within normal limits"), and yellow 
("borderline"). For example, Cirrus HD-OCT (Carl Zeiss 
Meditec, Inc., Dublin, CA) provides a two-dimensional (2D) 
RNFL thickness deviation map with 44 adjacent pixels 
grouped together to form fixed size super pixel (Fig. 2A). 
Quantitatively summarizing the full 3D dataset to one or 
several key indices is a fundamental challenge in glaucoma 
structural analysis and progression monitoring. 

Fixed size super pixel analysis has shown to be a potential 
tool to detect pathologic changes [3][4]. However, this 
method ignores the variable spatial architecture of the 
structural changes. For example, localized glaucomatous 
RNFL damage commonly exhibits an arcuate shape. 
Advanced super pixel segmentation is to partition an image 
into a moderate number of close-to-homogenous segments 
with variable sizes, called super pixels. When moving from 
pixels to super pixels, most of the structures in the image are 
conserved. Since super pixels are computationally efficient 
and perceptually meaningful, super pixel segmentation has 
been used successfully in large-scale applications, such as, 
image segmentation [5], video analysis and object tracking 
[6], stereo matching [7], object detection and pattern 
recognition [8]. In medical application, compared to a 44 
fixed size unit, super pixel with variable size segmentation 
provides a way to group homogenous image pixels to provide 
a more natural representation of pixel similarities.  

In this paper, a novel 3D SD-OCT data analysis technique 
utilizing the full 3D dataset is proposed to improve the ability 
of detecting glaucoma structural damage at early stages. The 
new method uses self-size-adjusting super pixel segmentation 
and machine classifier to quantitatively assess the 3D dataset 
in order to improve glaucoma detection.   

II. METHOD  

Many ocular diseases demonstrate areas of pathologic 
change with measureable differences from unaffected areas 
when considering features such as retinal layer thickness, 
internal reflectivity, etc. These pathologically affected areas 
usually share similar characteristics. Variable size super pixel 
segmentation provides an efficient way to depict this natural 

representation by grouping the similar neighboring sampled 
points based on the homogeneity of various features. 
Moreover, it reduces the complexity of 3D images from 
hundreds of thousands of voxels to only a few hundred super 
pixels. A self-size-adjusting super pixel machine classifier 
algorithm is proposed to quantitatively analyze the full 3D 
OCT dataset grouped into super pixels in order to improve 
glaucoma detection at an early stage of the disease. The 
kernels of the proposed algorithm include feature map 
generation, super pixel segmentation, feature extraction, and 
classification.  

A. 2D Feature Map Generation 

An A-scan in the 3D OCT image (2002001024 voxels) 
is considered as a unit when converting a 3D OCT image into 
a 2D map (200200 pixels). Each A-scan corresponds to a 
pixel in the 2D map. The first stage of the proposed method is 
to generate a 2D feature map as the input of super pixel 
segmentation. Four features, including RNFL thickness, 
RNFL reflectivity, blood vessel, and deviation from the 
normative database, are extracted, combined and converted 
into the feature map, depicted in a block diagram as shown in 
Fig. 3. 

Retinal layer segmentation [9] is first applied on each 3D 
dataset to obtain the RNFL and its thickness map, denoted as 
IRNFL. RNFL reflectivity of each voxel is normalized to each 
A-scan’s saturation. The RNFL reflectivity map, IReflectivity, is 
computed by taking the average reflectivity within the RNFL 
along each A-scan, which is converted to the range of [0, 1]. 
The retinal blood vessels, IVessel, are automatically detected 
using a 3D boosting algorithm [10] and removed from the 
RNFL thickness map using cubic interpolation. The RNFL 
thickness map, IRNFL, is compared with a normative database 
to obtain a deviation map, IDeviation. Each pixel in IDeviation is 
labeled from 0 to 1 corresponding to the pathologic damage 
stage from advanced damage to normal. To reduce the 
variation of the normative database, all RNFL thickness maps 
are normalized to the population’s average retinal nerve fiber 
bundle path (RNFBP) location [11]. The final feature map is 
an adjusted RNFL thickness map combining RNFL thickness, 
reflectivity, blood vessels and deviation from the normative 
database, written as:  

IAdjustedRNFL = f(IRNFL IReflectivity, IVessel)  IDeviation   (1) 
where f(• ) is the operation of blood vessel removing, both 

Fig. 2: An example of circumpapillary RNFL analysis as provided by Cirrus HD-OCT. (A) Overlay of retinal nerve fiber layer thickness (RNFL) 
deviation map on the OCT fundus image with structural damage (red and yellow regions) outside the 3.4mm circle samplings (red circle), (B) RNFL 
thickness profile along the 3.4mm circle is within the normal range (green range), (C) The average RNFL thickness in 4 quadrants and 12 clock hours. 
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IReflectivity and IDeviation are in the range of [0, 1].  

B. Self-size-adjusting super pixel segmentation 

Variable size/shape super pixels are automatically 
segmented on the 2D feature map by grouping homogeneous 
neighboring pixels using an ncut algorithm [12]. The optic 
nerve head (ONH) is detected using an active contour model 
[13] and masked for the super pixel segmentation. The size of 
each super pixel is automatically adjusted with the 
pre-defined criteria based on the pathologic contexts of 
glaucoma. To be more sensitive to RNFL thinning 
(glaucomatous damage), thinner RNFL (lower intensity in the 
feature map) is defined with smaller super pixels.  

The feature map is initially segmented into 100 super 
pixels. Super pixels smaller than the pre-defined limit are 
merged into its most similar neighbor. Each initially 
segmented super pixel is recursively partitioned into N 
segments (N more super pixels), while N is a function of mean, 
standard deviation and size of the given super pixel. The 
recursion stops once N is less than 2 or the size of super pixel 
is smaller than the pre-defined limit. The super pixel number 
and size are automatically adjusted by this recursive partition. 
In the segmented feature map, damaged areas tend to have 
smaller super pixels with thinner RNFL, while normal 
regions have larger super pixels (Fig. 3). This map provides a 
qualitative analysis with more natural representation. 

C. Feature Extraction 

As quantitative disease indices, the following super pixel 
features are extracted and used as the inputs of machine 
learning classifier: mean, SD, 3rd and 4th central moments, and 
histogram distribution of super pixel RNFL thickness and 
size. Two thresholds are set based on prior knowledge to 
obtain two sub-groups of super pixel with large size and small 
size and the feature parameters were computed for each 
setting. Global features, i.e. average RNFL thickness both at 
the 3.4mm circle and on the entire scan region, are also 
included. A total of 68 features were extracted including 
super pixel and global features. 

D. Glaucoma Classification 

The glaucoma classification is performed by an 
implementation of LogitBoost [14] adaptive boosting 
algorithm. The ensemble classifier was trained using shallow 
depth decision trees as the base classifiers. At each boosting 

round a sampling of images that were misclassified in the 
previous round were used for training purposes. The base 
classifier is trained and added to the ensemble. Subsequent 
base classifiers are added one by one and the weights are 
adjusted with each addition, with the goal of minimizing the 
overall training error. Gold standard definition for the 
training of the machine classifier was established by 
glaucoma expert’s diagnosis on each eye, which was labeled 
as normal (N), glaucoma suspect (GS) or glaucoma (G), 
based on clinical findings (visual field, disc photograph and 
eye exam). Because the boosting algorithm is a two-class 
classifier, only two of the three groups (N, GS, and G) are 
used to train the classifier each time. The classifier is applied 
to the super pixel segmented 3D OCT images labeling each 
image as a continuous number ranging from negative (normal) 
to positive (disease).  

Ten-fold cross validation is used to train/test the machine 
classifiers. The dataset is randomly partitioned into 10 
sub-folds with the uniform distribution for each diagnosis, 
“normal” and “disease”. One single sub-fold is used as a 
testing dataset while the other 9 sub-folds are used as training 
dataset. The training/testing operation is repeated 10 times. 
Each image is used in the testing dataset only once to obtain 
its machine classifier output.   

Area under the receiver operating characteristics (AUCs) 
of the machine classifier outputs, for discriminating between 
normal and glaucomatous eyes, is compared to the current 
method of diagnosis - circumpapillary RNFL thickness 
generated by Cirrus HD-OCT software.  

III. RESULT AND DISCUSSION 

One hundred and ninety-two eyes of 96 subjects (44 
normal, 59 glaucoma suspect and 89 glaucomatous eyes) 
were tested using Cirrus HD-OCT (ONH Cube 200x200 scan 
protocol). An independent dataset, including 46 eyes of 46 
subjects (randomly selected one eye for each subject), was 
used as the normative database. The proposed method was 
tested on three different combinations: N vs G+GS, N vs GS, 
and N vs G. Super pixel segmentation was first applied on the 
2D feature map generated from the 3D OCT image. A 
boosting algorithm was then performed on the extracted 
features to automatically identify diseased eye (glaucoma or 
glaucoma suspect).  

Examples of the results of super pixel segmentation are 
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Fig. 3: Flowchart of converting a 3D OCT image into a 2D feature map 
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given in Fig 4. The super pixel boundaries were 
superimposed on the adjusted RNFL thickness map, where a 
brighter pixel intensity corresponds to a thicker RNFL. 
Various distributions of super pixel size could be clearly 
observed on these three images with different diagnoses. The 
super pixel processing significantly enhanced the localized 
damage with smaller super pixels. Transforming into super 
pixel features, a 3D OCT image was represented by dozens of 
features efficiently. 

Table 1 summarizes the discrimination ability of the 
proposed method compared with the output of 
commercialized software. If both eyes have the same clinical 
diagnosis, one eye from each subject was randomly selected 
to compute AUCs. The AUC of normal vs glaucoma suspect 
eyes was statistically significantly improved from 0.707 (the 
circumpapillary RNFL thickness performance) to 0.855 
(p=0.031, DeLong test). The AUCs did not show significant 
differences for the other two comparisons. This is because 
late stage glaucoma presents with more globalized damage, 
therefore the variably sized super pixel analysis offers no 
more advantages than the circumpapillary RNFL analysis in 
late stage glaucoma discrimination. This can be improved by 
including more super pixel features, such as the averaged area 
and total number of super pixels.  

Table 1: AUCs computed with machine classifier compared to 
Cirrus HD-OCT software generated RNFL thickness. 

 
RNFL 

thickness  
Proposed 
method  

AUC Difference
[95% CI] 

N vs G+GS 0.812 0.846 
0.035 

[-0.053, 0.122] 

N vs GS 0.707 0.855 
0.148* 

[0.013, 0.283] 

N vs G 0.872 0.904 
0.032 

[-0.033, 0.098] 

CI – confidence interval, * – statistically significant, N – normal eyes, G – 
glaucomatous eyes, GS – glaucoma suspect eyes. 

IV. CONCLUSIONS 

The legacy method of OCT analysis has limitations in 
detecting localized structural damages because it only utilizes 
a fraction of the 3D data. In this paper, a new 3D OCT data 
analysis technique, super pixel machine classifier approach, 
has been presented to quantitatively summarize the 3D 
dataset and automatically identify glaucomatous eyes. 
Experimental results showed that this novel 3D OCT analysis 

technique was better at discriminating between normal and 
glaucoma suspect eyes than the traditional circumpapillary 
RNFL analysis, and performed similarly for normal vs 
glaucomatous eyes. This new method has the potential to 
improve early detection of glaucomatous structural damages. 
The proposed method can be easily extended to other ocular 
diseases by changing the features corresponding to the 
various pathologic contexts.   
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Fig. 4: Super pixel segmentation on 3D OCT images of normal (A), glaucoma suspect (B), and glaucomatous (C) eyes. 
Various shape/size super pixel boundaries are labeled by red on 2D feature map (adjusted RNFL thickness map). 
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