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Abstract— For radiotherapy planning, contouring of target

volume and healthy structures at risk in CT volumes is essential.
To automate this process, one of the available segmentation

techniques can be used for many thoracic organs except the

esophagus, which is very hard to segment due to low contrast.

In this work we propose to initialize our previously introduced
model based 3D level set esophagus segmentation method with

a principal curve tracing (PCT) algorithm, which we adapted

to solve the esophagus centerline detection problem. To address

challenges due to low intensity contrast, we enhanced the PCT
algorithm by learning spatial and intensity priors from a small

set of annotated CT volumes. To locate the esophageal wall, the

model based 3D level set algorithm including a shape model
that represents the variance of esophagus wall around the

estimated centerline is utilized. Our results show improvement

in esophagus segmentation when initialized by PCT compared

to our previous work, where an ad hoc centerline initialization
was performed. Unlike previous approaches, this work does

not need a very large set of annotated training images and has

similar performance.

Index Terms— Curve Tracing, Level Sets, CT, 3D Image

Segmentation, Spatial, Shape Model, Radiation Oncology

I. INTRODUCTION

Curvilinear objects are common in biomedical images,

e.g., bronchial tree, vessels, neuronal arbors. The methods

proposed to segment and trace such structures can be

classified into two groups i) Global methods [1], [2] that

locate the centerline of tubular structures by optimizing a

global objective and ii) local methods [3], [4] that make

local decisions during the trajectory estimation using local

evidence. Global methods, are generally more robust to

noise and outliers, provided that there is sufficient training

data, but are typically less flexible in adaptation to internal

variation in the object parameters along its length and

also more computationally burdensome. For problems where

outliers play a significant role but global methods cannot be

applied (for example due to a paucity of training data), a

method which fuses the two approaches can be attractive.

Segmentation of the esophagus from 3D CT falls into

this category because of absence of both consistent intensity

contrast and reliable discriminative features between the

esophagus and surrounding mediastinum tissue in thoracic

CT scans. Segmentation of the tumor and nearby structures

including the esophagus is of critical importance in path

planning for radiotherapy to avoid inadvertent damage when
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irradiating tumors. However, esophagus is very difficult to

locate compared to other thoracic structures. Perhaps due to

these difficulties, previous studies are limited. Rousson et

al. [5] located the esophagus centerline with a minimal path

approach based on locations of left atrium and descending

aorta. They segmented the esophageal wall in a limited range

of the cranio-caudal axis (around the left atrium) by fitting

a 2D ellipse model to each slice using an appearance based

cost function with a slice-to-slice smoothness term. Feulner

et al. [6] classified candidate 2D ellipses in each slice as

being esophagus or not. They combined these decisions

and forced smooth slice-to-slice parameter transitions with

a Hidden Markov Model. However, their method requires

a large amount of training data for correct classification,

in part due to variable appearance in the presence of air

bubbles, contrast agent, or both.

Recently we presented a model based 3D level set esoph-

agus segmentation algorithm [7] over the entire thoracic

range employing a shape model, with a global and a locally

deformable component. This model requires initial center-

line estimation and we used an ad hoc centerline estimator

where the centerline estimation was only performed at the

locations of some predefined anatomical landmarks followed

by interpolation for the remaining slices. In this work, we

extend our previous algorithm by replacing this ad hoc

centerline estimation with a more theoretically grounded

principal curve tracing (PCT) algorithm adapted from [4].

We extend that work on PCT, addressing problems related

to this local tracing method in low contrast regions with the

use of prior spatial and appearance models estimated from

the training set. We initialize our 3D level set segmentation

algorithm from this PCT centerline estimate. We report

below on the consequent improvements in the segmentation

results compared to our previous work [7].

II. METHODS

We first describe how we register the annotated training

CT data sets to learn prior models from them and how

we use them to guide the PCT algorithm for centerline

detection. We then summarize how the PCT result is used

to initialize the level set algorithm for 3D segmentation.

Finally we explain the additional prior models learned from

the training set and how they are incorporated into the cost

function formulated in a level set optimization framework

for 3D surface segmentation.

Landmark based registration: Before we build prior mod-

els from training sets, for which manual annotations of

the esophagi and neighboring structures are available, we

first register manually annotated structures in the training

set to a common reference set. To do so, we used a

simple anatomical landmark based registration algorithm.

We chose 7 easily located anatomical landmark points along
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the z (cranial-caudal) axis, located at the following positions

(superior to inferior): top of the lungs, thoracic vertebrae 2

and 3, bifurcation of trachea, top of heart, thoracic vertebra

8 (and left atrium), and right ventricle. We first matched

those landmark slices of the training and the reference data

sets. We then interpolated the contours for slices in between

landmarks.
A. Learning step for centerline detection

For centerline estimation, we build two prior models:

1) a spatial model of the esophagus center location with

respect to the neighboring anatomical structures and 2) an

appearance model of the esophagus.

Spatial Model: We learned a model of relative spatial loca-

tion of anterior-posterior (x) and left-right (y) coordinates of

the esophagus center with respect to neighboring structures

for each slice from training data. We assumed the segmen-

tations of those neighboring structures are available, either

from manual segmentation or a prior use of an automated

algorithm. Since these structures are much easier to segment

than the esophagus and are already commonly segmented in

clinical practice this is not an onerous assumption. These

neighboring structures are the vertebra, descending aorta

(DA), trachea (or left main bronchi (lmb)) and heart. For the

x direction, from landmark slices 1 to 5 the trachea (or lmb)

and vertebra are used, from landmark slice 5 to 7 heart and

vertebra were used. For the y direction, from landmark slice

1 to 5 only the vertebra was used and from the landmark 5

to 7 the vertebra and DA were used. The spatial model for

x and y direction were built for all slices. For each slice,

the normalized distance between the x-coordinate of the

esophagus center to the first neighboring structure (dx) and

to the second (1−dx) were calculated over all data sets and

similarly for the y coordinates to get dy’s. (See Fig. 5 (a)).

We applied kernel density estimation (KDE) to histograms

of dx and dy over all data sets to estimate their probability

density functions (pdf). From these pdfs, for a given voxel

in a test set, the x and y components of the spatial centerline

probability (ρx(x)) and (ρy(x)) were estimated.

Appearance Model: We learn an appearance model from

the training set as intensity pdfs, one inside (pin(I(x)))

and one outside (po(I(x))) the esophagus, estimated using

kernel density estimation from the intensity histogram.

The esophagus appearance changes in the presence of air

bubbles, which are very dark compared to the esophagus and

oral contrast agents, which are very bright. These regions

inside the esophagus appear unpredictably in any given

scan and so are detected and removed before building the

appearance model and before processing in the test case,

if they are present. In [6], thresholding was used to locate

esophageal air. In our data sets, due to CT artifacts around

the boundaries of air bubbles/oral contrast agent which

create an artificial intensity range, a single hard threshold did

not succeed. Instead, we used a looser threshold resulting in

falsely detected air/contrast regions which we then reject in

a second step using a classifier trained on simple features

such as area and location with respect to neighboring struc-

tures. Once detected, we took advantage of the presence

of air/contrast regions to locate the centerline and the

esophagus, especially in regions lacking contrast. Therefore

we incorporated them in the spatial model calculated for

a voxel in a test set for centerline estimation by setting the

value of that voxel to the maximum spatial probability value

over the entire region (max{ρx(xj)ρy(xj)}).

B. Probabilistic Centerline Estimation with Principal Curve

Tracing Algorithm

PCT is a non-parametric method based on the concept of

subspace local maxima. Mathematically, a principal curve of

a twice continuously differentiable function, p(x) (obtained

from the data samples xi ∈ R
3, i = 1 . . . N) is a set

of points which has the property that the local gradient,

g(x), is aligned with the eigenvector corresponding to the

smallest absolute eigenvalue of the local Hessian matrix,

H(x), and all the eigenvalues of the corresponding remain-

ing eigenvectors are negative [8]. In order to obtain such

points on the curve, first, we defined tangential space as

the span of the eigenvector having the smallest absolute

eigenvalue. Similarly, remaining eigenvectors are selected

as the basis for the normal space. Let H‖(x) and H⊥(x) be

the tangential and normal components of the local Hessian

matrix respectively, such that H(x) = H‖(x) + H⊥(x) =

λ1q1(x)q1(x)T +
P3

i=2 λiqi(x)qi(x)T where λi and qi are

the ith eigenvalue and eigenvector pairs of H(x) and |λ1| <

|λ2| < |λ3|. A measure being on the curve can be given as

ζ(x) = abs(
g(x)TH⊥(x)g(x)

‖H(x)g(x)‖‖g(x)‖
) (1)

such that ζ(x) vanishes on the principal curve, since the

inner product of g(x) and eigenvectors of H⊥(x) are zero.

Here, one can use this measure to project all samples

to their corresponding principal curves as a dimensionality

reduction technique [8] by solving a differential equation

at every iteration, however given the size of the data such

an approach is not feasible in our task. Moreover, different

neighboring tissues have different intrinsic dimensionality

and can not be modeled as a curvilinear structure. For

that reason we start from a seed location on the center of

the esophagus and iteratively trace the ridge of a function

estimated from the data having high values at the esophagus

center. We used a weighted kernel density estimation tech-

nique to obtain a pdf, after replacing the detected air/contrast

regions in the original intensities, I(x) ∈ R
+, by fitting

an intensity surface to the local neighborhood using cubic

spline interpolation. We further enhanced the PCT algorithm

by incorporating prior appearance and spatial models learned

from training data while estimating the feature pdf.

Our iterative tracing algorithm consists of update and

correction steps, where in the update step we trace the

underlying principal curve of the feature pdf along the

tangential direction using fixed length updates. In order

to obtain continuous trace we correct the direction of the

tracing update such that it will have positive inner product

with the previous iteration. Since each tangential update

deviates the trajectory of the trace from the underlying curve,

we use the correction step to project back to the curve. In

the correction step, we use the projection of the gradient

on the normal subspace to climb up to the subspace local

maxima where the underlying principal curve lies. In this

scheme, iterations in the normal plane of the principal curve

which carry out correction steps are alternated with update

iterations in the direction of the tangential vector.

In our calculations, we restricted the density estimate

calculations to a finite ǫ-ball support around a sample point
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(Bǫ(x−xi)) and employed Gaussian kernels for both spatial

(GΣi
) and appearance (Gδ) domain. KDE of feature pdf

p(x) is given as

p(x) =
P

xi∈Bǫ(x) w̄iGΣxi
(x− xi) (2)

Here, N is the number of samples, xi is the position of a

voxel in the neighborhood, α is the normalization constant

of the kernel, wi is the weight of the ith kernel, and

w̄i = αwiGδi
(I(x) − I(xi)) is the overall effective weight.

We estimated Σi from the mean shape learned from the

training data, whereas δ is selected experimentally. KDE

weights were determined as w(xi) = pin(I(xi))ρ(xi) from

the appearance model pin(I(xi)) and the modified spatial

model ρ(xi) built during learning step. Letting βi(x) =
w̄iGΣxi

(x− xi), the gradient and Hessian are

g(x) = −
X

xi∈Bǫ(x)

βi(x)Σ−1
xi

(x − xi) (3)

H(x) =
X

xi∈Bǫ(x)

βi(x)(Σ−1
xi

(x − xi)(x − xi)
T Σ−1

xi
− Σ−1

xi
)

(4)
We used the most likely point according to the spatial model

as the initial center seed to start PCT at the first slice.

Note that the correction iterations, as well as the tracing

updates might result in locations which are not limited

to voxel grid centers. This enables us to obtain subpixel

accuracy during tracing. However, in order to calculate

the intensity differences between the current iteration and

its neighborhood at subpixels, we used nearest neighbor

interpolation. We recorded the location of the correction step

as the trace location Pt at the tth iteration.

C. Locating The Esophagus Outer Boundary Surface

After centerline estimation with PCT, we initialized of

the shape model with the estimated centerline and used

our 3D level set algorithm with a locally deformable shape

model [7] to find the esophagus wall. For the level set energy

function (E) in Eqn. 5, we used standard energy terms

[9], [10] including an appearance (Eapp), a level set reg-

ularization (Ereg) and a smoothing (curvature) term (Esm)

and some problem specific terms including an air/contrast

(Eair), a neighboring structures term (Enb) and a shape

fitting term (Eshape) which we will explain next.

E = Eapp + Eair + Enb + Eshape + Ereg + Esm (5)

Shape Model: To model the complex tubular esophagus

shape, we used a shape model that has both global and

local components. After landmark based registration of

the annotated esophagi, centerline is subtracted from each

esophagus which allowed modeling of variations around

centerline only. To model these variations, the global shape

component (ψ) was constructed from the mean shape and the

principal component analysis (PCA) modes (eigen-shapes

Ui), assuming they are gaussian distributed.

ψ = ψm +
k

X

i=1

ciUi (6)

where ci’s are the weight of the modes and parameters to

be optimized for an esophagus shape in a test data. We also

learned a prior on ci’s. To do so, we calculated the histogram

of each ci over the training shapes and constructed the prior

assuming a uniform density.

For the local component of the shape model, although we

locally estimated the centerline with PCT, we also included

the nonlinear local transformation into the shape model to

correct for the inaccuracies in center estimation. This model

follows the locally affine transformation model in [11]. To

construct this model, N uniformly sampled action points zk

through the centerline were chosen. A local transformation,

in the form of a translation in x-y plane, to be applied

to each zk was constructed. This translation affects the

neighboring slices and this effect smoothly dies off as one

moves away from the action points in z-direction. Such a

local deformation A was formally defined in [7].

Next, we define the shape energy (Eshape) that drives the

level set function φ to be similar to our shape model ψ(A).

Here δǫ is the dirac delta function.

Eshape(φ, c) =

Z

Ω
δǫ(φ)(φ − ψ(A))2dΩ (7)

The energy term for appearance (Eapp) [9] uses the

appearance model learned from the training data. Here

pin(I) and po(I)) are the pdfs inside and outside esophagus

and Hǫ is the Heaviside function of the level set φ.

Eapp(pi, po) = −
R

Ω
[Hǫ(φ) log(pi(I))dΩ

−
R

Ω
(1 −Hǫ(φ)) log(po(I))]dΩ

(8)

To make use of the presence of air and contrast regions

we incorporate them into the level set framework with

an additional air/contrast term (Eair). Here pair is a pdf

indicating the probability of a voxel being inside esophagus

which is close to 1 if the pixel is air/contrast and 0.5

otherwise.
Eair(pair) = −

R

Ω
[Hǫ(φ) log(pair(I))dΩ

−
R

Ω
(1 −Hǫ(φ)) log(pair(I))]dΩ

(9)

We used a similar energy term (Enb, same form as

Eair) to exclude neighboring structures from the segmented

esophagus. This term includes a probability function that

takes low values (∼ 0) for the neighboring structure voxels

and 0.5 otherwise.

After including level set regularization Ereg [10] and

smoothness Esm terms [9], the energy functional in Eqn.

5 was obtained. We minimized this function with respect to

φ and shape parameters to locate the esophagus boundary.

For a test set, after landmark based registration, cen-

terline was estimated by the PCT algorithm and the data

was centered around this estimated centerline. Then 3D

segmentation algorithm was initialized. We initialized the

shape prior as the mean shape. The initial level set function

representing the esophagus boundary and the shape prior

level set function were updated at each step t by minimizing

E. The equation of evolution for φ is given by calculus

of variations; the optimization of E with respect to mode

weights ci were obtained by solving a linear system [9].

Adding the weight priors results in a constrained least

square minimization that was solved by convex optimization

[12]. Finally, the minimization of E with respect to local

deformation parameters was carried out using calculus of

variations. The update equations were explained in [9], [7].

III. RESULTS

We report experiments using thoracic CT scans (resolution

0.98x0.98x3.75mm3 ) from 8 subjects. We tested our method

with a leave-one-out scheme for training and testing. The

input to the algorithm is the designation of anatomical

landmarks and the segmentation of neighboring structures,

which can be obtained using available algorithms [13],

[14], [15], [16]. We report the results in comparison to the

manually segmented esophagi in all data sets.

3405



We first report the results of the centerline estimation

algorithm. The PCT centerline estimation resulted in a mean

error of 1.40 ± 0.55 mm in x and 2.44 ± 0.64 mm in y

direction over all experiments. Fig. 1 shows a comparison

of these results to our previous work [7], which achieved

average error of 1.9 mm in the x-direction and 4.1 mm in

the y-direction. Fig. 3 illustrates the results of both centerline

estimation algorithms for two data sets (numbers 6 and 7).

The true centerline is also shown for comparison. The errors

in y direction are larger due to the presence of a larger low

contrast neighborhood in that direction.

We use the following point-wise distance metric to eval-

uate the results of the esophagus boundary surface segmen-

tation algorithm. The distance between the points on both

contours at the same angle from the x axis were calculated

for each slice. Fig. 2 shows point-wise mean distance errors

of each data set. Results improved from a point-wise mean

error of 2.6 ± 2.1 mm and maximum error of 17.6 mm to

2.1± 1.9 mm and maximum error of 15.1 mm. The results

for 3 sample axial slices are shown in Fig.5 (b) and a 3D

rendering in Fig. 4 for a sample data set.

Fig. 1. Mean ± std error of the centerline estimation algorithms
in x (left) and y (right) for each data set. Blue curves represent the
PCT results whereas red curves show earlier interpolation results.

Fig. 2. Mean ± std error of final segmentations of each data set.

Fig. 3. Results of the centerline estimation algorithm (Red ground
truth, magenta PCT, green landmark interpolation) for two different
views (left and right) and two data sets (data 6-left, 7-right box).

IV. CONCLUSIONS AND FUTURE WORK

We introduced a PCT algorithm for esophagus centerline

estimation that works on the local pdf and incorporates prior

models learned from training data to improve performance,

especially when intensity contrast is absent. The estimated

centerline based on PCT is used to initialize the model

based 3D level set segmentation algorithm. This algorithm

takes advantage of prior models including appearance and

shape models and the presence of air bubbles and contrast

agents. Since the algorithm works in 3D, in contrast to

existing 2D algorithms with additional slice to slice smooth-

ness constraints, this algorithm directly achieves a smooth

segmentation result.
We are currently acquiring a larger data set to fully test

the method. We eventually expect to be able to eliminate the
required user input by automating the landmark selection

and neighboring structure segmentation processes using the
algorithms in [13], [14], [15], [16]. The robustness of our
algorithm when manual annotation is replaced by automated
segmentation will be evaluated. However, due to smooth
appearance of spatial model, the algorithm will compensate
for the segmentations errors of a few mm.

Fig. 4. Segmented esophagi in 3D (yellow-ground truth, blue-
algorithm) for three different views, where on the left view the
segmentation is plotted with orthogonal CT slices.

(a) (b)

Fig. 5. (a) Spatial Model illustrated on a sample slice. Esophagus
center location (pink dot) is learned with respect to neighboring
structure locations (green pluses). (b) Axial slices from 3 data sets
showing the result of the algorithm (green) and expert (red).
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