
 
 

 

  

Abstract— In this paper, we propose an automated liver 
segmentation method to overcome the challenging issues of high 
degree of variations in liver shape / size and similar density 
distribution shared by the liver and its surrounding structures. 
To improve the performance of conventional statistical shape 
model for liver segmentation, in our method, the signed distance 
function is utilized so that the landmarks correspondence is not 
required when performing the principle component analysis. We 
improve the Chan-Vese model to bind the shape energy and local 
intensity feature to evolve the surface both globally and locally 
toward the closest shape driven by the PCA. In our experiments, 
20 clinical CT studies were used for training and 25 clinical CT 
studies were used for validation. Our experimental results 
demonstrate that our method can achieve accurate and robust 
liver segmentation from both of low-contrast and high-contrast 
CT images. 

I. INTRODUCTION 
OMPUTED tomography (CT) liver segmentation allows 
for accurate measurement of liver volume and is 

increasingly used in the treatment and management of diverse 
liver diseases, for instance, aiding the better localization and 
evaluation of size and shape of hepatic metastases[1]. Liver 
segmentation is currently performed manually in clinical 
practice and it is time-consuming, operator intensive and 
non-reproducible [2]. 

A number of early researchers have reported automated or 
semi-automated segmentation techniques, including intensity 
range estimation, morphologic operators, and different active 
models [2-3] to overcome the problems of manual 
segmentation from high-contrast CT images[4]. These 
methods mainly based on gradient or intensity analysis may 
not be able to distinguish the liver from its surrounding organs, 
which share the similar densities, particularly in low-contrast 
CT studies. To improve the segmentation, probabilistic atlas 
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based methods were introduced to describe and capture more 
priori information on the shape, size and position of the liver 
[5-6]. Accurate mapping of the probabilistic atlas onto the 
testing CT volumes to determine the performance of 
segmentation is challenging, due to the variability in liver 
shapes. 

More recently, statistical shape model (SSM) has been 
introduced to improve CT segmentation. SSM-based 
segmentation methods use principal component analysis 
(PCA) to capture and estimate the shape features of the liver 
[2, 7].  The construction of landmark correspondence for all 
training datasets [7] is the first step in the majority of SSM 
based liver segmentation, which is a complicated and time 
consuming task.  
 Level-set methods to solve the energy-based active contour 
minimization problem [8-9], play an important role in various 
medical image segmentation [10]. The level-set based methods 
normally take account of the local image features, and thereby 
it would improve the performance of level-set when the global 
information on the expected anatomical shape can be included 
to guide the contour evolution. Leventon et al. [11] and Tsaiet 
et al. [12] pioneered the use of prior shape knowledge within 
the level-set framework.  

In our paper, we performed PCA on a collection of signed 
distance functions of the training shape without landmarks 
required. The group-wise registration was introduced to 
produce anatomical correspondences among liver training 
datasets to avoid the bias introduced by pair-wise registration 
[13]. The shape energy driven by PCA was combined with 
local image density feature to update the Chan-Vese model to 
improve the segmentation performance.  

II. METHODOLOGY 
Our algorithm consists of two major parts: shape model 

training and evolving level-set surface with shape constraint 
energy.  

A. Shape Model Training Phase 
The workflow of the shape model training phase is 

summarized as Fig. 1 that includes liver shape representation 
and SSM construction. 
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Fig. 1. The framework of shape model training. 
 
1) Liver Shape Representation 

A popular and natural approach to represent shapes is via 
point distribution models where a set of landmarks are used to 
represent the boundary of the shape. However, as discussed in 
[12], this approach suffers from problems such as numerical 
instability, inability to accurately capture high curvature 
locations, difficulty in handling topological changes and the 
need for point correspondences.  

To overcome these issues, in our algorithm, firstly, the 
group-wise affine registration is applied to the manually 
segmented liver training datasets to construct the training 
shapes alignment and in the mean time to preserve the identity 
of individual shape. Then we apply SDF [11] to implicitly 
represent each training shape. 

 Let Ω be a bounded open subset of 3R . To be consistent 
with the level-set, as [12], the boundaries of each of the aligned 
training shapes, denoted by Ω⊂C , are represented as the zero 
level-set of Lipschitz function R→Ω:φ , such that  
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By far, for each training liver volume, we generate a SDF 
representation that is a 3D volume with corresponding SDF 
values. 
2) Statistical Shape Model Construction 

Rather than constructing the SSM based on the landmark 
correspondence in the conventional methods, in our method, 
the SSM is constructed with the SDF representations of the 
training shapes.  

We form a column vector from each SDF shape 
representation that is a  MNN ×× 21  volume. Thus, from n  

training shapes, we construct a vector T
niSDF xxxX ]......[ 1=  

where ix  is the column vector of SDF shape representation 
with MNN ×× 21 elements. PCA is then utilized to capture the 
variability of the training shapes when constructing SSM.  

In PCA, the nn ×  covariance matrix S  of SDFX  is 
calculated as below:  
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where xxdxi −=  and the mean point x  in n  dimensional 
space representing the mean shape of training shapes. 

Through calculating the eigenvectors and eigenvalues of S , 
the expected shape x  can be derived from the model using: 

)3(Pbxx += [14] 
where ( )tPPPP …21 ,=  is the matrix representing the first t  
variation mode, i.e. first t  eigenvectors, and ( )T

tbbbb …21 ,= is 
the corresponding weight vector of P . In order to keep the 
shape consistency, b  is limited to λλ 33 <<− b , where λ  
is the eigenvalue of the corresponding eigenvector. The 
derived x  is then transformed back into SDF shape 
representation and the zero level-set is the boundary of the 
derived shape. 

B. Shape Constrained Surface Evolution Model  
1) The Chan-Vese Model  

Using level-set, Chan and Vese proposed a general 
region-based segmentation model [8]. In this model, the 
segmentation can be achieved via minimizing the following 
energy function: 
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where C  is the active surface , i.e. zero level-set; 0u  is the 
testing volume; 0,,0,0 21 >≥≥ λλυμ are the fixed regularizing 
terms. The model can separate the volume into two partitions 
with average value 21,cc  respectively [8].  
 However, directly applying the Chan-Vese model to the 
liver segmentation cannot achieve a robust segmentation 
result. The expected liver partition may wrongly include other 
adjacent tissues that share similar densities with liver and the 
edges among these multiple regions are not easily 
distinguishable. 

To improve this model for a better liver segmentation, we 
introduce global shape energy derived from SSM into the 
level-set energy function to regulate the shape of evolving 
surface for the liver region of interest. 

2) Evolving Level-set Surface with Shape Energy 
In our algorithm, the shape energy is calculated by 

minimizing the differences between the surface )(tu  and the 
estimated surface )(tum from the SSM at each iteration t  
using:  

( ) ( ) )5(min 2tutuE mtshape −=  

To obtain the estimated surface mu from SSM, we update 
the weights b for equation (3) as defined in [14]:  
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)6(dxPdb T=  
After introducing this shape energy as defined in (5), the 

level-set energy function (4) is revised as:  
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where 03 >λ  represents the SSM contribution to the surface 
definition;  H is Heaviside function; φ is from equation (1) to 
replace C in equation (4); 0→ε ; 1c  and 2c  are updated during 
iteration t .  

To minimize 
εE  with respect to φ , the associated 

Euler-Largrange equation forφ is deduced. Parameterizing the 
descent direction by iteration t , the new speed for level-set 
equation in ( )zyxt ,,,φ  is defined as: 
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The process of evolving the surface along the energy 
minimization direction is performed iteratively until the 
energy function is converged. In our experiments, to speed up 
segmentation procedures, the multi-resolution scheme was 
applied to SSM construction and our revised level-set 
calculation.  

III. EXPERIMENTS AND DISCUSSION 

A. Clinical Datasets 
Our clinical datasets are comprised of 45 normal studies, 

including 25 low-contrast CT volumes from GE Discovery LS 
and 20 high-contrast CT volumes from Philips Brilliance Big 
Bore. The low-contrast CT images are 512*512 pixels with 
16-bit quantization and 4.25mm thickness, and the 
high-contrast CT images are 512*512 pixels with 16-bit 
quantization and 3mm thickness.  

The liver was manually segmented for all datasets by 
experienced radiologists. The manually segmented liver 
volumes were used as the ‘ground truth’ for validating the 
accuracy of the automated segmentation. We constructed the 
shape model from 10 high-contrast and 10 low-contrast CT 
liver volumes and the remaining 25 datasets were used for 
validating our segmentation performance.  

B. Quantitative Validation  
The commonly used metrics for measuring the 

segmentation quality including the volumetric overlap 

percentage error (VOPE), the relative volume difference 
(RVD) [2], and the average square symmetric surface distance 
(ASD) [2] were employed to quantify the performance of our 
segmentation method.  Table.1 shows that our algorithm was 
able to segment the liver accurately. It is not surprising that our 
method worked better on the high-contrast CT volumes when 
compared to working on the low-contrast CT images, although 
the accuracy was comparable.      

 

 
C. Effect of Shape Energy Constraint 

In our experiments, the initial surface for Chan-Vese model 
was initialized with the mean shape from PCA and placed on 
the estimated location of the testing liver by using our previous 
work [15]. To demonstrate the effect of the shape energy on 
balancing the global and local features in liver segmentation, 
one example is illustrated as Fig. 2.  As shown in Fig.2, simply 
applying the Chan-Vese model cannot distinguish the exact 
boundaries among regions with similar density range, and the 
result was improved after introducing the shape energy to 
guide surface evolution.    

Fig. 2. The illustration of surface evolution driven by different energy 
functions.  

D. Visual Assessment of Segmentation Results 
Fig.3 illustrates four groups of experimental segmentation 

results from our method (delineated in red color) and the 
manual segmentation (delineated in green color) from high 
/low-contrast CT volumes for visual assessment.  

TABLE I ACCURACY OF LIVER SEGMENTATION IN HIGH/LOW-CONTRAST 
CT IMAGES. 

 VOPE 
[%] 

RVD 
[%] 

ASD 
[mm] 

15 low-contrast CT 
datasets  8.9±2.4 3.4±2.7 2.1±0.8 

10 high-contrast CT 
datasets 6.3±2.1 2.3±2.5 1.5±0.2 
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Fig. 3. The transverse, coronal and sagittal views of liver volume segmentation 
by our method delineated in red and manual segmentation delineated in green 
for high/low-contrast CT volumes respectively.  

IV. CONCLUSION 
We improved the level-set method by taking account into 

the statistical model information as shape energy. The SDF 
was applied to represent the implicit surface representation 
which allowed the PCA construction without the need of 
landmark correspondence. Our experimental validation on 25 
clinical CT volumes demonstrated that our algorithm was 
robust and accurate to segment the liver from both 
high-contrast and low-contrast CT images.  
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