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Abstract— In this paper we present a system for detecting
regions of carcinoma of the prostate (CaP) in H&E stained
radical prostatectomy specimens using the color fractal dimen-
sion. Color textural information is known to be a valuable
characteristic to distinguish CaP from benign tissue. In addition
to color information, we know that cancer tends to form
contiguous regions. Our system leverages the color staining in-
formation of histology as well as spatial dependencies. The color
and textural information is first captured using color fractal
dimension. To incorporate spatial dependencies, we combine
the probability map constructed via color fractal dimension
with a novel Markov prior called the Probabilistic Pairwise
Markov Model (PPMM). To demonstrate the capability of
this CaP detection system, we applied the algorithm to 27
radical prostatectomy specimens from 10 patients. A per pixel
evaluation was conducted with ground truth provided by an
expert pathologist using only the color fractal feature first,
yielding an area under the receiver operator characteristic
curve (AUC) curve of 0.790. In conjunction with a Markov
prior, the resultant color fractal dimension + Markov random
field (MRF) classifier yielded an AUC of 0.831.

I. INTRODUCTION

The current screening protocol for CaP includes a digital

rectal exam and prostate-specific antigen test. If these tests

reveal abnormalities, a transrectal ultrasound guided biopsy

is required to excise tissue for histological examination. If

this histological analysis reveals the presence of cancer, a

surgeon may perform a radical prostatectomy (RP), excising

the entire gland. Following prostatectomy, the prostate is

sliced into histological sections (typically whole or quarter

sections). These histological sections (HS) are stained with

hemotoxylin and eosin (H&E). The hematoxylin colors the

nucleic material blue, while eosin stains the cytoplasmic

structures and extracellular matrix red. The color and texture

of these stains provide valuable information to distinguish

cancer tissue from benign tissue; there exists higher variation

in color in cancerous regions due to the dense packing of

nulcei.

Though the grading of HSs is currently performed by

clinicians, there are several advantages that have motivated

the development of Computer-Aided Diagnosis (CAD) sys-

tems [1][2] for detection of prostate cancer on histological
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specimens. These advantages include: (1) CAD allows for

analysis of the vast amount of the data present in HSs, a

time-consuming task currently performed by pathologists, (2)

extraction of quantitative and reproducible features can help

reduce inter-expert variability in prostate cancer grading, and

(3) CAD allows for speedy and more accurate diagnosis

which can potentially influence the making of treatment

related decisions.

Fractal dimension (FD) is a method widely used to capture

intensity and texture information. In the past, the compu-

tation of FD of images has been defined for only binary

and gray scale images. Recently, a color version has been

proposed by Ivanovici [3] that captures information from the

three different color channels.

The use of color fractal dimension (CFD) on HS enables

the valuable color information to be exploited. Due to the

known difference in color intensity and texture between

cancer and benign regions on HS, the FD value obtained

for pixels in the cancer region are different from pixels in

the benign regions. Furthermore, we know that a cancer

pixel is more likely to be adjacent to another cancer pixel.

Therefore, instead of evaluating each pixel in isolation, we

can consider the spatial dependencies among pixels to obtain

a more accurate CaP detection result. This is done using

a Markov Random Field (MRF). We use a novel type of

Markov prior called the Probabilistic Pairwise Markov Model

(PPMM) [1].

The CaP detection system in this paper performs classifi-

cation of pixels using CFD. We incorporated new constraints

in the CFD algorithm to calculate CFD on a per pixel

basis. Having computed the feature on a per pixel basis,

we determine the per pixel likelihood of cancer given the

corresponding feature value. Contextual information is then

incorporated with a Markov prior to yield a final classifica-

tion of cancer or benign at each pixel.

The remainder of this paper is organized as follows: in

Section II, we introduce previous applications of FD to

medical image analysis and also describe the specific novel

contributions of our methodology. In Section III, we provide

an overview of the CFD algorithm, as well as our extension

to this proposed algorithm. In Section IV, we introduce our

comprehensive CaP detection system. This is followed by

quantitative and qualitative evaluation of our integrated CFD

and MRF classifier in Section V. Concluding remarks are

presented in Section VII.
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II. PREVIOUS WORK AND NOVEL CONTRIBUTION

The idea of fractal geometry was introduced by Mandel-

brot [4] to describe self-similar sets called fractals. Fractal-

based analysis has been widely used for digital image

analysis, including medical images and histology. Esgiar [5]

has used fractal analysis in the detection of colonic cancer. In

addition, Di leva [6] utilized fractal-based analysis to assess

the angioarchitectural heterogeneity in human glioblastoma

multiforme. Azemin [7] has also developed a methodology

for fractal analysis of the retinal vasculature. However, FD

algorithms employed in these studies are only defined for

gray scale images.

In this paper we present a novel extension of the FD algo-

rithm to account for color images and extend an existing CFD

scheme (initially proposed by Ivanovici [3]). The specific

novel contributions of this paper are as follows,

1) Extension of the CFD scheme in [3] to allow for CFD

calculations on a per pixel basis with extension to

hyper-rectangles instead of only hyper-cubes.

2) Leveraging the CFD features in conjunction with spa-

tial constraints imposed via a Markov prior to build a

classifier for detection of prostate cancer on histologi-

cal sections.

III. COLOR FRACTAL DIMENSION

A. Color Fractal Dimension Algorithm by Ivanovici [3]

The CFD algorithm originally proposed by Ivanovici [3]

extracts a single fractal dimension D for a given image.

This algorithm considers a color image as a set S of

points in 5-D space, where the five dimensions are the two

spatial dimensions (x, y) and the three color dimensions

(r, g, b). The arrangement of the points is characterized by

the probability matrix P (m,L), which is the probability of

having m points included into a hyper-cube (or box) of size

L centered at an arbitrary point s ∈ S. It is known that

the fractal dimension D can be found using the following

equation [3]:

N(L) =

N∑

m=1

1

m
P (m,L) ∝ L−D, (1)

where N(L) is the number of pixels included in a box of

size L.

Calculating the probability matrix P (m,L) requires first

counting at each point s ∈ S, the number of points in S that

lie within the hyper-cube defined by:

|F k − F s| = max(|F k
i − F s

i |) < L ∈ ∀i ∈ {1, 2, 3, 4, 5},
(2)

where F k
i is the value ith dimension of point k in the 5-D

space (x, y, r, g, b) and F s is the center of the hyper-cube.

Once the counts are determined for all L and s ∈ S, the

matrix P (m,L) can be found by enforcing the following

normalization on the box counts:
∑N

m=1
P (m,L) = 1, ∀L.

To find the CFD, we do not directly solve Equation 1 for

D. Instead, the typical method is to plot the negative of the

logarithm of L against the logarithm of its corresponding

N(L) as shown if Figure 1. The slope of this regression line

is D.
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Regression fit, slope D = 1.6043

Fig. 1. Regression fit for negative logarithm of N(L) against the logarithm
of the corresponding box size L. The slope of this line is D, the color fractal
dimension.

B. Extension of the CFD Algorithm

The CFD algorithm proposed by Ivanovici [3] calculates

a single CFD value D for the entire image. In order to tailor

algorithm for detection of CaP, we calculate the CFD on a

per pixel basis. To do so, we calculate the CFD D(s) of a

Lx × Ly sub-image centered at the current pixel s. Instead

of constructing a hyper-cube about the center pixel F s, we

construct a hyper-rectangle which has different bounding

sizes Lx, Ly , LR, LG, and LB for each color channel and

spatial dimension. This modification is made to tailor the

analysis to prostate histology. Through analysis of the red,

blue and green channels in histology separately, the most

suitable bounding size of the hyper-rectangle can be found

for each channel.
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Fig. 2. Gamma fit of cancer pixel and benign pixel CFD. The blue line
represents the CFD gamma fit for benign pixels, and the red line represents
the CFD gamma fit for cancer pixels.

IV. EXPERIMENTAL DESIGN

A. Algorithm Overview

Our CaP detection system comprises the following steps:
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• Step 1: Calculate color fractal dimension on a per pixel

basis

• Step 2: Bayesian Classification on a per pixel basis

• Step 3: Incorporate spatial constraints via Markov Ran-

dom Field (MRF)

B. Bayesian Classification

A mixture of gamma distributions are used to model the

probability density functions (PDF) for the CFD of cancer

and benign pixels:

g(y; θ,k, α) = αyk1−1
e−y/θ1

θk1

1
Γ (k1)

+ (1−α) yk2−1
e−y/θ2

θk2

2
Γ (k2)

,

(3)

where y > 0 is the CFD, α∈ [0, 1] is the mixing parameter,

k1, k2>0 are the shape parameters, θ1, θ2>0 are the scale

parameters, and Γ is the Gamma function [8]. The PDFs

generated for the cancer and benign classes are shown in

Figure 2. The probability of each pixel being cancer given

its CFD feature value is obtained via Bayes theorem.

C. Incorporating Spatial Dependencies with Markov Ran-

dom Field (MRF)

Since cancer pixels are more likely to be next to cancer

pixels, incorporating contextual spatial information is essen-

tial for accurate CaP detection. We include this contextual

information by combining the conditional probabilities de-

scribed in Equation 3 with a novel type of Markov prior

called a probabilistic pairwise Markov model (PPMM) [1].

To determine the optimal labeling (classification), we per-

form maximum a posteriori estimation via iterated condi-

tional modes (ICM). ICM (like all other MAP estimation

schemes for MRFs) does not yield probability values, but

instead produces a hard classification for each pixel. To vary

the operating point (i.e. sensitivity/specificity) of the system

we vary an internal threshold T ∈ {0, 0.5, .1, . . . , 1} as

described in [9]. This yields a total of 21 different operating

points.

D. Dataset Description

The dataset consists of 27 H&E stained histological sec-

tions from radical prostatectomies obtained from 10 patients

at the University of Pennsylvania. All slides were digitized

at 40x magnification (0.25 µm per pixel) with the following

range of dimension values: 2000 ≤ x ≤ 3000 and 2000 ≤
y ≤ 3000. An expert pathologist delineated the cancerous

regions as ground truth for classifier training and evaluation.

E. Implementation and Classifier Training

The following experiment was conducted to evaluate the

CaP area detection capability of the algorithm. The CFD is

calculated for all pixels across the 27 histological sections.

Seven different values were used for the (x, y) size of the

hyper-rectangle: Lx, Ly ∈ {3, 5, 9, 17, 33, 65, 129}. The red

(LR), green (LG), and blue (LB) channel bounding size were

13, 23 and 19, respectively.

Leave-one-out cross validation was used for classifier

training and evaluation. First, the PDFs of CFD feature

values for cancer and benign pixels in the training set were

obtained. With these distributions, the probability of each

pixel being cancer and benign is calculated for all the pixels

in the slide. This procedure was repeated until all slides were

classified. After classifying with Bayesian probability created

via CFD information alone, we proceeded to incorporate

spatial information with a Markov Prior to obtain a final

classification of cancer or benign for each pixel.

V. RESULTS AND DISCUSSION

A. Quantitative Results

The Bayesian probabilities calculated with CFD over all

pixels were thresholded to produce a receiver operator char-

acteristic (ROC) curve with an area under the curve (AUC)

of 0.790. Once the Markov prior is introduced, the AUC

improves to 0.831. Both ROC curves are shown in Figure 3.

As can be seen, the ROC curve after incorporation of spatial

dependencies has a higher AUC than CFD classification

alone, indicating that including the spatial dependencies

improves detection accuracy.
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Fig. 3. ROC curves for classification of pixels with CFD alone and after
adding the Markov prior, across 27 studies, using a leave one out validation
strategy.

VI. QUALITATIVE RESULTS

To help visualize the algorithm behavior, we show the (1)

Bayesian probability map obtained with CFD, (2) a cancer

decision map obtained by thresholding the probability scene

at the operating point on the ROC curve (best trade-off

between sensitivity and specificity), and (3) a cancer decision

map obtained by incorporating spatial dependencies to CFD

with a Markov Prior, for two prostate histological slides. The

histological sections with carcinoma region annotations and

corresponding probability maps are shown in Figure 4. As

can be observed, the cancer areas in the probability maps

obtained via the CFD and CFD+MRF classifiers agree very

well with the ground truth annotation for disease extent

provided by the expert pathologist. Figures 4(d) and (h) also

reveal that the spatial constraints imposed by the MRF allow

for improved disease detection sensitivity and specificity

compared to the CFD classifier alone.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 4. (a), (e) Histological section with annotation of cancer area; (b), (f) Bayesian probability result using CFD; (c), (g) Final labeling result after
thresholding the Bayesian probability at the optimum point; (d), (h) Final labeling result after incorporation of spatial information via Markov Prior.
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Fig. 5. (a) Benign and (b) Cancer pixel CFD feature value gamma
distributions for 5 different studies. Each color represents a separate slide.

VII. CONCLUDING REMARKS

In this paper we present a novel methodology that exploits

color fractal dimensions with spatial constraints imposed

via a Markov random field to accurately detect prostate

cancer on histological specimens. The novel methodological

contribution of this work was to extend the CFD algorithm

initially proposed in [3] to allow for the CFD computation

on a per pixel basis and permitting its use in the context

of hyper-rectangles, as opposed to only hyper-cubes. While

the overall AUC of the integrated CFD+MRF classifier is

already high (0.831), we believe we could achieve even

higher accuracy if the intensity non-standardness issue (on

account of color and illumination variability across slides)

can be addressed. The impact of this non-standardness on

the CFD is shown in figure 5 which illustrates PDFs of the

CFD for 5 different images. Another direction of future work

is to fuse the existing classifier with the gland based cancer

detection classifier presented by Monaco et al. [1].
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