
  

  

Abstract — We propose a stochastic framework to analyze 

and compare differences in human motions for applications in 

injury prevention, rehabilitation, sports training and 

performance research.  Human motions are modeled as Hidden 

Markov Models and the differences between the motions are 

measured using the Kullback-Leibler distance metric.  The 

distance metric is recomputed with degrees of freedom 

excluded to determine which degree of freedom most influences 

the difference between a set of motions.  The proposed system is 

tested on a human motion dataset consisting of lifting 

movements under differing load weights and ankle bracing 

conditions. Results indicate that the algorithm is capable of 

successfully determining which joints are impacted and 

ranking them according to importance.   

I. INTRODUCTION 

Given that personal movement patterns can influence 
injury, rehabilitation, and performance outcomes [1], there 
exists a need for methods which can objectively classify and 
detect differences in motion exhibited between individuals 
and over time.  Methods that are also capable of identifying 
relative contributions of specific body segments or joint 
motions to differences in whole body movements are 
particularly desirable because this information can be used 
to better understand the implications of inter- and intra-
individual variations in movement and to develop and 
evaluate intervention strategies.  In this paper we propose an 
automated framework utilizing a stochastic representation of 
motion to quantitatively measure how much each joint 
contributes to the difference between two whole body 
motions.   
  Recently there has been an increased interest in applying 
artificial intelligence techniques to automate and improve 
the analysis of human motions [2].  Such techniques include 
Support Vector Machines (SVM) [3,4], Artificial Neural 
Networks (ANN) [5,6], decision trees [7], and Hidden 
Markov Models (HMM) [8,9].  Typically when SVMs, 
ANNs, and decision trees are used to compare motions 
certain features from the time series motion data are selected 
as the basis for comparison.  The classification accuracy of 
these methods relies on selecting the correct set of features.  
Abstracting a motion to a set of features results in a loss in 
temporal information and variance in the motions is 
typically treated as noise due to the deterministic nature of 
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these algorithms.  It has been argued convincingly, however, 
that movement variability is an important and commonly 
observed feature of human performance that should not 
always be treated as noise by movement scientists [10]. 
  In comparison, an HMM [11] is a stochastic 
representation of the movement that captures the variability 
of motions that appear over several demonstrations, in 
addition to capturing the temporal information describing the 
movement progression.   

We propose a novel framework for comparing motions 
based on an HMM representation.  Similar to the approach 
of Kulić et al. [9], the Kullback-Leibler (KL) distance [11], a 
measure of dissimilarity between models, is used to compare 
two motion models.  In the proposed framework, Degrees of 
Freedom (DOF) are excluded from the trained model in 
order to determine how that DOF affects the difference 
between two motions. The system then ranks the DOF in 
terms of similarity between the motions. We tested our 
system on a human motion dataset in which subjects 
performed laboratory-simulated occupational lifting tasks 
with and without their right ankle immobilized.   

II. MOTION ANALYSIS FRAMEWORK 

A. Motion Representation 

When performing human motion analysis, different signal 
sets can be considered, including: joint angle, Cartesian 
coordinates, or EMG data.  Our framework is general and 
allows the use of any one of, or a combination of, these 
signals.  HMMs [11] are used to model each movement.   

Every HMM λ is composed of three main parameters:   
         λ = (π, A, B)                           (1) 
where π is the initial probability vector, A is the transition 
matrix and B is the probability distribution function.  Left-
to-right HMM models are used, so that π1 = 1.  Elements of 
the transition matrix A are defined as:    
  ��� = ���� =  
����� =  
�},      ���  ≥ 0 ,      � ��� = 1�

��     (2) 

where aij is the probability that the model will transition to 
state Sj at time t given that the model was previously at state 
Si at time t-1.  For the observation probability distribution B 
we use multivariate Gaussian distributions:  

��(Ō) =  ��(�� , ��)                                     (3)                        
Where bi is the observation probability function of state Si, 
Ō is the observation vector generated by state Si, and �K is a 
K-dimensional Gaussian consisting of the mean vector µi 
and the covariance matrix Ui. 
  To construct a model, parameters for λ are initialized and 
trained based on a set of observation sequences, using equal 
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state initialization as proposed in [12] and the Baum-Welch 
training algorithm [11].  

B. General Comparison of Motions 

To compare HMM models the Kullback-Leibler (KL) 
distance [11] is used:  

 D(λ, λ!) =  

"
 [ log P(O(!)�λ* −  log P(O(!)�λ!* ]         (4) 

where O(2) is an observation sequence generated from  λ2, 
P(O|λ) is the probability that an observation sequence O was 
generated by the model λ, and T is the length of the 
observation sequence.  An efficient algorithm for computing 
P(O|λ) is the forward algorithm [11]. 

The KL distance is non-symmetric [11]. To obtain a 
symmetric measure we calculate the symmetric distance Ds 
using the following relationship: 

-.(/, /!) =  
-(/, /!) +  -(/!, /)

2
                       (5) 

C. Degree-of-Freedom Comparison of Motions 

In this section we introduce our proposed method for 
comparing motions and determining the sources of variation.   

Initially individual HMM models are trained for each 
motion.  To compare the difference in a DOF between two 
motion models λ1 and λ2, the mean and covariance for that 
DOF is removed from the model.  Then the distance between 
λ1 and λ2 is computed with the DOF excluded. This is 

repeated for all the DOF’s in λ1 and λ2.  When comparing 
these distances, the excluded DOF that results in the smallest 
distance is the DOF that separates the two motions the most. 

Let us now formalize the procedure for this analysis.  
Given a set of T trained models denoted as: 

λ = { λ1, λ2, λ3, … λT }                         (6) 
For each model we have training observation sequences (i.e. 
recorded data) for F number of DOFs: 

O = { o1, o2, o3, … oF }                        (7)   
Then each model λ i is a function of O such that:   

λ i (oi) = λ i ({oi1 , oi2 , oi3  , … oiF })             (8) 
Next the DOF e is excluded from the model such that λi 

becomes the model λ i,e with excluded DOF e: 
λ i,e (oie) = λ i ({oi1, oi2, … oi,(e-1), oi,(e+1) … oiF })    (9) 

Note that the DOF information is excluded by removing the 
eth element in all µ vectors and removing the eth rows and 
columns from all U matrices that constitute B for the model 
λi. 

Now we can calculate the distance vector DE comparing 
excluded DOF models for λi and λj as: 

_    
The next step is to order the values in the vector DE(λ1,λ2) by 
magnitude, where the smallest distance number will 
correspond to the DOF that most impacts the difference 
between the two motions.  

D. Joint Comparison of Motions 

The method in II-C considers the contribution of each 
individual DOF to the difference between motions, but we 
may also be interested in analyzing the contribution to 
groups of DoFs, for example for those joints which are multi 
DOF, such as the hip or shoulder.  In this case the procedure 
is modified to exclude sets of 3 DOF.  We define a joint as a 
set of 3 DOF (consisting of either x, y, z in Cartesian 
coordinates or θ, φ, ψ in Cardan joint angles).   

Equation 9 is modified such that when a set s is excluded 
(where 0 ≤ s ≤ F/3 - 1) from the motion λi it becomes the 
excluded set model λ i,s: 

           λ i,s (oi,(s*3+1) oi,(s*3+2) o i,(s*3+2))  
        =  λ i ({o i1, o i2, … o i,(s*3), o i,(s*3+4) … o iF })        (11) 

Next the DE vector in equation 10 is modified to account for 
computation of F/3 distance calculations instead of F 
distance calculations: 

_ 

III. EXPERIMENTAL PROCEDURE 

A. Experiment Setup 

 
Figure 1 - Configuration Setup:  Lift Origins (1,2,3) and 
                   Destinations (4,5,6) are Labeled 
 
 The data used to test our approach was collected in an 
experiment examining the influence of unilateral ankle 
immobilization on low-back loading and injury potential 
during lifting [13].  Using an optoelectronic motion capture 
system (Optotrak Certus, NDI, Waterloo, Canada), the 
positions and orientations of the feet, shanks, thighs, pelvis, 
and trunk of 10 male subjects were captured while they 
performed lifting tasks.  A 24 DOF Cartesian model was 
used.  Standard inverse kinematics computations were used 
to convert the positions into Cardan joint angles for the 
ankles, knees, hips, and lumbar spine.  The joint angles 
formed a 21 DOF joint-angle model.  

 With and without their right ankle immobilized, subjects 
lifted two masses (light = 3.7 kg; heavy = 12.7 kg) from 
three different origins (positions 1, 2, and 3) to three 
different destinations (4, 5, and 6) (figure 1).  Three 
repetitions of each task were performed.  Ankle 
immobilization was achieved through the use of a brace 
designed to restrict ankle motion in all three anatomical 
planes. 

(10) 

(12) 
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B. HMM Model Configuration Details 

A model was trained for each combination of: Cartesian / 
joint angle representation, movement task, loading 
condition, and bracing condition. Only the trajectory data 
from the start of the load lifting to the end of the load release 
was considered.  Prior to training, the trajectory data for 
each individual DOF was normalized on the range from -1 to 
1 using the minima and maxima of the DOF trajectory 
across all subjects.   

All motion primitives were modeled as 15 state HMMs.  
The optimum number of states for the models was 
determined with Leave-One-Out Cross Validation. 

The covariance matrices were modeled as diagonal 
matrices, due to the limited size of the training data set (30 
data sets per motion).     

IV. RESULTS AND DISCUSSION 

Analyses were conducted on the full dataset described in 
section III-A, but for brevity only a subset of the results are 
presented here to demonstrate the utility of the proposed 
methodology.  Summarized in figure 2 are findings from the 
general level comparisons; results from selected joint level 
comparisons are presented in figures 3 and 4.   

Regardless of whether motions were modeled using 
Cartesian coordinates or joint angles in the general-level 
comparisons, the distance measures for a motion subgroup 
(i.e. same motion under various constraints) typically 
clustered around a certain mean distance number (figure 2).  
Thus it is possible to distinguish between motions on the 
basis of the distance metric.  Looking at the joint angle 
representation we see that the distance numbers for a 
specific motion sub-group tended to form clusters with a 
smaller standard deviation in comparison to the Cartesian 
representation.  This tells us that for this dataset the joint 
angle data may be better for differentiating between different 
motion types and that Cartesian data may contain additional 
information for analyzing variations within a motion 
subgroup.  Note that distances in figure 2 have been 
normalized to account for the different number of DOF in 
the Cartesian and joint-angle data by dividing the distances 
by the number of DOF. 

In figure 2, distances within each motion sub-group are 
compared to see the impact of the constraints.  For example 
in motions 3to4 we found that ‘light and no brace motion’ 
was most similar to the ‘heavy and no brace’ motions and 
that ‘heavy and brace’ motion was the most dissimilar to the 
‘light and no brace’ motion.  This is expected since the 
similar motion had one constraint changed where as the most 
dissimilar motion had two constraints changed. 

Next we identified the specific sources of differences in 
motions 3to4 at the joint level (section II-D). The excluded 
joint that resulted in the smallest distance has the most 
impact on the motion difference.  In agreement with the 
previously reported findings of the original experiment [13], 
figures 3-a and 3-c show that the right ankle joint was 
affected most by the brace.  Results from the Cartesian 

coordinate dataset were also consistent with these findings, 
as the right shank was the segment most impacted by right 
ankle immobilization (figures 4-a and 4-c).  This makes 
sense as changes in Cartesian coordinates of the right shank 
are affected by position of the right ankle joint.   
  Beach et al. also found that under braced conditions, there 
was a tendency for subjects to exhibit greater spine flexion 
to compensate for the loss of ankle mobility [13].  While this 
tactic is not apparent in the joint angle distances, the 
Cartesian data resulted in relatively lower distance numbers 
for the trunk indicating that this is one of the body parts that 
exhibited different movement between the braced and non-
braced motions.  Perhaps the reason the joint angle data set 
did not similarly characterize this response was because 
between-condition differences in spine flexion (~ 2-5 
degrees) were not statistically significant across all lifting 
tasks [13]. 

Next we were interested in finding new trends that were 
not observed in [13]. In figures 3-b and 4-b it can be seen 
that in the joint angle representation, the left ankle and trunk 
were impacted the most by the size of load lifted. In the 
Cartesian representation, the pelvis and trunk were impacted 
the most by load.  We noted that motion 3to4 in particular 
requires shifting the weight of the body on to the left foot 
and we also expected that lower back motion would be 
affected by lifting a heavier weight.  Our results were later 
confirmed by Beach et al in [14], a continuation of the study 
[13], where they found that the motion (about all anatomical 
axes) of the left ankle was significantly affected by load (p < 
0.0036) and the angle of the trunk (with respect to the 
pelvis) was significantly affected by load about two axes. 

V. CONCLUSIONS AND FUTURE WORK 

  This paper proposes an approach for detecting changes in 
motions by using stochastic models to represent time series 
movement data.  This allows us to capture the temporal and 
spatial variability inherent in human motions.  Our method 
allows the use of joint angle, Cartesian coordinates, or EMG 
data, and any combination of these signals for analysis.  We 
present an approach for analyzing the change in individual 
DOF and joints wherein we excluded specific DOF 
information from trained HMM models to detect the change 
in the motion. By finding the minimum KL distance between 
excluded DOF models we were able to find out which DOF 
was most affected by motion constraints.  This approach for 
analyzing DOF is suitable for automatically finding changes 
in signals for a high DOF data set where the location of the 
change in motion is not known a priori. We tested our 
framework on a human movement dataset in which subjects 
lifted loads under various conditions.  Our results match 
those found in a previous study [13].  Thus, our approach 
shows promise for use in human motion analysis, with 
potential applications to rehabilitation, sports training and 
medical diagnosis. 
  Future work will focus on analyzing the temporal 
variability of the distances over the duration of the motion as 
well as detecting common strategies that subjects may try to 
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use for performing similar motions.  In addition to this, the 
proposed method could be extended to exclude combination 
of joints in order to determine which set of joints is the most 
impacted.  This would be useful because in human motions 
limbs tend to move in synchronous manner. 
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(a) 
 

(b) 
 Figure 2 – General level comparison of motions where distances are with respect to 3to4 ‘light and no brace’ 

 

(a) (b) (c) 
Figure 3 – Joint level comparison of motions 3to4 using joint angle representation 

(a) (b) (c) 
Figure 4 – Joint level comparison of motions 3to4 using Cartesian representation 
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