
 

 

  

Abstract— Ubiquitous analysis of gait is a rapidly emerging 

field in which research and commercial development has been 

focused mainly on determining spatio-temporal parameters.  In 

this preliminary research we have developed an algorithm to 

determine gait metrics from a shoe mounted accelerometer and 

compared them with concurrent kinematic data.  Subjects were 

tested at different walking speeds as well as an artificially 

induced stiff ankle condition, to determine what metrics 

estimate kinematic changes that are related to speed and those 

that are related to real kinematic changes.  These preliminary 

findings suggest that accelerometer outputs from the foot 

combined with contextual knowledge of the general walking 

speed of the subject can be used to estimate ankle plantar 

flexion angular velocity in terminal stance. 

I. INTRODUCTION 

ait analysis can provide a detailed insight into the 

nature of deviations from normal motor programming 

and movement control that can occur in the presence of 

disease or injury [1]. Until recently gait analysis was 

primarily performed in a laboratory setting using marker 

based systems. The increasing availability of inexpensive 

sensor technologies has led to a large body of work directed 

towards development and validation of inertial sensor based 

gait analysis techniques [2]. Due to their simplicity, shoe 

mounted accelerometers offer a large opportunity to 

ubiquitously monitor gait in order to detect the early onset of 

diseases or injuries and changes in disease symptoms. 

Much research has been done to investigate the feasibility 

of using foot mounted accelerometer data to measure spatio-

temporal gait parameters [3, 4]. Other research in using 

accelerometers to quantify gait patterns has utilized a lumbar 

mounted accelerometer to estimate speed, incline and 

symmetry [5, 6]. Inertial measurement units (IMUs), which 

are accelerometers combined with gyroscopes, have been 

used to determine kinematic data. While this is a useful 

technique in a research setting it requires a person to wear so 

many sensors that the regular, everyday use of such systems 

would likely not be feasible [7, 8]. In this research we 

attempt to use a single sensor and computationally light data 

processing to estimate two important gait kinematic factors; 

ankle plantar-flexion and knee flexion. 
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The ankle plantar-flexor muscles play an important role 

during walking gait; they generate a large portion of the 

energy needed to move the limbs forward during the push-

off phase [9].   

Diseases that often result in abnormal plantar-flexion 

activity include Parkinson’s disease, stroke, diabetes 

mellitus and cerebral palsy [10, 11]. The development of a 

lower body injury would also likely result in abnormal 

plantar-flexion activity during walking gait.   

Knee flexion is important during the gait cycle because it 

is responsible for ensuring that the foot is in a position in 

which it will clear the floor during mid-swing [1]. Neuro-

degenerative diseases such as Parkinson’s disease often 

result in decreased knee flexion at initial swing; which can 

lead to a fall [12]. 

Early detection of a change in ankle plantar-flexor activity 

or knee flexor activity may be able to be ubiquitously 

detected using a tri-axial accelerometer mounted in a 

patient’s shoe. 

In this study we present an algorithm to quantify variables 

from shoe mounted tri-axial accelerometer data and 

investigate how well they relate to peak knee flexion angular 

velocity around TO and ankle plantar-flexion angular 

velocity during terminal stance. This has been achieved by 

means of comparing accelerometer data against kinematic 

data derived from a marker based gait analysis system 

during different walking speeds and conditions in healthy 

adult volunteers.   

II. METHODS 

A. Study set-up 

Eight volunteer participants were recruited for this study; 

6 were female and 2 were male. Each participant signed a 

consent form prior to their participation and ethical approval 

for the study was approved by the University ethical review 

board. The participants’ average age was 27.4 years (+/- 

2.67 yrs), their average weight was 59.1 kgs (+/- 12.4 kgs) 

and their average height was 1.68 m (+/- 0.11m). 

Each subject performed 20 separate 15m walking trials in 

a biomechanics laboratory. Five walking trials were taken 

under each of four different conditions; normal walking, fast 

walking, slow walking and simulated stiff ankle walking.  

For the fast and slow walking trials the subjects were 

instructed to walk at a pace that they subjectively rated as 

fast or slow as compared to their comfortable normal 

walking pace. The stiff ankle condition was simulated by 

using a lace up ankle brace, which restricted ankle plantar-

flexion.   

A CODA motion capture system (Charnwood Dynamics, 
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Leicestershire, UK) was used to collect kinematic data. 

Markers were placed on the particiapants right and left sides 

at PSIS’, ASIS’, greater trochanters, femoral condyles, 

fibular heads, lateral malleoli, heels and toes. An IMU 

(Xsens MTx , Enschede, Netherlands) was placed on top of 

each subjects shoe above the shoe laces,  held in place with 

athletic tape. 

B. Data analysis 

Data from the Xsens MTx sensors was analyzed using 

MATLAB 2009b (Mathworks, Massachusetts, USA). Total 

acceleration (TA) was calculated from x, y and z 

acceleration signals by using equation 1. 

 

Total acceleration (TA) = sqrt(Ax
2
+Ay

2
+Az

2
)                    (1) 

 

Total acceleration and x-accelerations were used to 

quantify the acceleration data. X-acceleration represents the 

sagittal plane acceleration while a subject is standing still 

with the sensor mounted on the dorsum of their foot. 

Forwards represent the positive direction.  It was decided to 

keep the x-acceleration in local orientation in relation to the 

sensor.  This dramatically increases the usability of these 

variables in a real world setting, since they do not rely on 

computationally heavy acceleration re-orientation into a 

global state. This is an important consideration, especially 

since for a system such as this to function in the real world 

there is limited processing capability on board the sensors 

themselves and the smart-phones that would be collecting 

the data. 

An algorithm was created to quantify aspects of the 

acceleration signal from each walking trial post test.  First, 

the fundamental frequency of TA was determined and then 

TA was band pass filtered between 0.3 Hz to the 

fundamental frequency. On the sinusoidal resultant curve, 

positive going zero crossings were used to estimate where 

initial swings were and negative going zero crossings were 

used to estimate where foot strike (FS) occurred. Initial 

swing peaks were found in a range around the positive going 

zero crossing point and FS was found by first searching for a 

peak on the derivative of y-acceleration (jerk) and then 

finding the next peak on y-acceleration from that point. Y-

acceleration represents the vertical acceleration, upwards is 

the positive direction. 

Four main variables were determined from the 

accelerometer data. Peak TA during initial swing (PTAIS) 

and peak x-acceleration during initial swing (PAxIS) were 

determined and represent the maximal amount of 

acceleration the foot experiences during initial swing.  Mean 

TA during mid-swing (MTAMS) shows the mean amount of 

acceleration seen during the swing phase. The time between 

peak TA during initial swing to FS (TTAFS) was also 

quantified and possibly has a scalar relationship to air time. 

The kinematic variables determined were peak knee 

flexion angular velocity around TO (KFTO) and peak ankle 

plantar flexion angular velocity in terminal stance (APFSt). 

Table 1 provides a summary of all variable abbreviations. 

 

 
Fig. 1. Total acceleration (TA) curve for one gait cycle.  RF - right foot, 

LF - left foot. 

The relationship between the accelerometer variables and 

the lower body angular velocities were investigated using 

Pearson product-moment correlation coefficient.   

 
TABLE I 

ABBREVIATIONS 

Accelerometer variables Units 

PTAIS Peak TA during initial swing m/s/s 

PAxIS Peak x-accel during initial swing m/s/s 
MTAMS Mean TA during mid-swing m/s/s 

TTAFS Time between peak TA initial swing to FS sec 

 
Kinematic variables 

 

KFTO Peak knee flexion angular velocity around TO deg/sec 

APFSt Peak ankle plantar flexion angular velocity in 
terminal stance 

deg/sec 

m = meter, s = second, deg = degree 

 

Walking speed was assessed post test by calculating the 

stride length and stride time from the right heel marker.  

Multiple regression was used with walking speed category to 

estimate APFSt. Walking speed was categorized into 

normal, slow and fast and was determined from the 

kinematic data. 

III. RESULTS 

Table 2 shows the Pearson product-moment correlations 

between KFTO, MTAMS and PAxIS.  There was a 

moderate positive correlation between KFTO and mean TA 

mid swing (r = 0.526, r
2
 = 0.277) and a moderate negative 

correlation to peak x-acceleration during initial swing (r = -

0.481, r
2
 =0.231) [13].   

 

 

 

 

3493



 

 

TABLE II 

CORRELATIONS BETWEEN KFTO AND ACCELEROMETER 

OUTPUTS 
Kinematic variable Algorithm output r r2 

KFTO MTAMS 
PAxIS 

0.526 
-0.481 

0.277 
0.231 

 

Figure 2 shows the relationship between PAxIS and 

KFTO. 

 
Fig. 2. The relationship between PAxIS and KFTO 

A multiple regression equation was developed to estimate 

APFSt. This included PTAIS, MTAMS and two dummy 

variables; one called fast which was set to 1 if the person 

was walking fast and set to 0 if the person was not walking 

fast. The other dummy variable was called norm and was set 

to 1 if the person was walking at normal speed and set to 0 if 

the person was not walking at normal speed. The regression 

equation had a strong positive correlation to APFSt (r = 

0.795, r
2
 = 0.539). Table 3 shows the coefficients for the 

multiple regression equation. 

 
TABLE III 

MULTIPLE REGRESSION COEFFICIENTS FOR ESTIMATING 

APFSt 
 B SE B Beta 

Constant -56.247 11.363  

Norm 5.959 1.244 .358* 
Fast 7.229 2.114 .368* 

PTAIS -.533 .130 -.422* 

TTAFS 94.439 12.877 .499* 

MTAMS -.319 .426 -.095 

r = .795, r2 = .539, * p < .05 

 

Figure 3 shows the estimated APFSt from the regression 

equation and the actual APFSt. 

IV. DISCUSSION 

A. Knee flexion 

KFTO was increased in the stiff ankle condition from the 

normal walking condition, despite the walking speed being 

similar in both conditions. This may be due to the fact that 

the knee flexors had to do more work to flex the knee, rather 

than rely on the power transfer from the ankle plantar-

flexors, which were restricted from moving into their 

optimal position around TO due to the ankle brace. 

 

 
Fig. 1. APFSt plotted with APFSt estimated by the multiple regression 

equation. 

 

PAxSW and MTAMS both have moderately positive 

correlations to KFTO. When looking at the averaged data for 

all subjects, it seems that PAxIS alone can detect the KFTO 

change in the stiff ankle condition. While this moderate 

relationship is interesting, it is by no means a close enough 

relationship to suggest that clinicians could use such 

measures. KFTO cannot be estimated accurately enough by 

using outputs from a shoe mounted accelerometer. 

B. Ankle plantar flexion 

APFSt was predicted by PTAIS, TTAFS and MTAMS 

quite well for the normal, fast and slow walking conditions, 

but they could not predict the lower APFSt in the stiff ankle 

condition. This suggests that these variables were showing 

changes due to speed and not due to actual ankle plantar-

flexion characteristics. 

However, being able to classify the subjects walking speed 

into normal, fast or slow allowed us to develop a regression 

equation which predicted APFSt well at the three different 

speed conditions as well as the stiff ankle condition. TTAFS 

had the highest coefficient in the multiple regression 

equation; reflecting the importance of this variable in 

differentiating between the different walking speeds. TTAFS 

alone could not predict APFSt because it is a temporal 

parameter that is mainly related to walking speed and 

walking speed was similar between the normal and stiff 

ankle walking conditions. Angular kinematics changed in 

the stiff ankle condition, but not walking speed. The 

downside to this regression equation is that walking speed 

has to be quantified. 

Four main methods could potentially be used to classify 

walking speed in a practical setting. The addition of a single 

axis gyroscope to the foot sensor could allow for speed 

determination [14, 15]. The advantage of this is that no more 

sensing units are required as a gyroscope would have to be 

added to the accelerometer unit. The disadvantage is that 

processing power to calculate walking speed is much more 

computationally heavy than the algorithm described here and 
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would likely result larger processor demands and shorter 

battery lives for the small wireless sensors involved. 

A second lumbar mounted sensor could be used to estimate 

walking speed [5, 6]. This has the advantage of not requiring 

a significantly large amount of processing, since simple 

estimation equations can be used to determine walking 

speed.  The disadvantage of a lumbar sensor is that it is 

adding another sensor to the system; one that might not be as 

ubiquitous as a sensor embedded in a shoe. This may 

decrease the usability of the system. 

Thirdly, walking speed could be estimated from a GPS 

signal form the local smart-phone. It is likely that if such a 

sensing system were to be created, the shoe embedded 

sensor would already be communicating wirelessly with a 

smart-phone. Many smart-phones have GPS and walking 

speed could be assessed using the GPS in the smart-phone. 

This is an ideal scenario, except that GPS reception is not 

always reliable, especially in and around buildings so it may 

not work all the time. 

Fourthly, change in MTAMS is somewhat related to 

walking speed and it could potentially be used to classify 

walking speed. This was assessed with the preliminary data 

in this study and it was found that comparing MTAMS to 

MTAMS in normal walking predicted APFSt change in the 

three different speed conditions, but slightly underestimated 

APFSt in the stiff ankle condition.  Research on a larger 

subject pool may be useful to determine if a general trend 

exists that would allow for easy gait speed classification 

from this method. 

C. Practical considerations 

This research shows that APFSt cannot be estimated 

without knowing the general walking speed of the person. 

This at first may seem like a limiting factor to the usefulness 

of such a technique. However, walking speed classification 

is an important contextual factor to consider for any 

ubiquitous gait analysis tool. If speed classification was not 

known a gait problem could be erroneously flagged which 

was actually only due to a change in walking speed. So, for 

such a technique to be used in the real world, general 

walking speed would have to be measured regardless if it 

was used to aid in angular kinematic estimation. 

Data from an accelerometer only was used in this study 

because using an accelerometer alone is cheaper, smaller and 

requires less processing capacity than combining it with 

other sensors, such as a gyroscope. These are all important 

considerations when researching practical methods of 

ubiquitous gait monitoring because if a change in movement 

patterns can be detected with the smallest, cheapest sensor 

then such a system is significantly easier to implement than 

a multi-sensor approach. 

With the cost and size of sensor and processing 

technology rapidly decreasing and wireless communication 

becoming more efficient it is possible to envisage a system 

in which a tri-axial accelerometer is embedded in a shoe and 

communicates wirelessly with a local smart-phone which 

can detect  if there is a change in the way a person is 

walking.  Similar systems are available commercially, but 

are limited to looking at spatio-temporal parameters.  Such a 

system may be able to help more people if it could detect 

changes in more important kinematic features of walking 

such as changes associated with diseases affecting the motor 

or neuromuscular system.  In this way it could be useful in 

early diagnosis or classification of gait deviations in the 

field.  

V. CONCLUSION 

This preliminary research suggests that a shoe mounted 

accelerometer could be used to detect a change in ankle 

control during gait over time in a subject. This technique 

does not estimate changes in knee angular kinematics very 

well. Future research should focus on researching this 

finding in a larger subject pool and testing to find out if the 

accelerometer data alone can identify a deviation from 

normal gait patterns. 
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