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Abstract— A novel method devoted to the reconstruction
of the joint angles in a kinematic chain is described. The
reconstruction algorithm is based on the fusion of the in-
formation deriving from inertial sensors (accelerometers) and
conductive elastomer strain sensors. Accelerometers provide a
reliable reconstruction when they are employed as inclinometers
in quasi-static conditions. They suffer from artifacts when
they are used to detect fast movements or when interactions
with the environment occur. The knowledge of the frequency
components of the movement to be detected permits removal of
these artifacts. Conversely, conductive elastomer sensors have
a complex dynamic response, but they can easily provide the
frequency content of the movement to be detected. A filtering
strategy of the inertial sensor signals based on the elastomer
sensor response provides a reliable reconstruction of joint
variables during the movement.

I. AIMS

Continuous daily-life monitoring of the functional activi-
ties in neurological patients during their physical interaction
with the environment is essential for optimal guidance of
rehabilitation therapy by medical professionals and coaching
of the patient [1]. Such performance information cannot
be obtained with present monitoring systems [2]. It is the
objective of this paper to introduce an unobtrusive system
for monitoring activities of daily life and for training of
upper limb motor function in diseased subjects. The system,
integrated in clothing (e-textile), includes both fabric-based
Conductive Elastomer (CE) and inertial sensors and provides
telemonitoring capabilities. CE materials show piezoresistive
properties when a deformation is applied [3], [4]. They
can be applied to fabrics or to other flexible substrate
and they can be employed as strain sensors [5]. These
materials represent an excellent trade-off between mechano-
electrical transduction and possible textile integration. On
the other hand, the construction of a relationship between
a fabric strain field and a human position may be difficult
and computational expensive. Inertial Measurement Units
(IMUs) give an accurate measurement of body movement,
but they are bulky, they suffer for magnetic disturbances
and they are still quite expensive. IMU measures of body
segment orientation are reliable in quasi static situations
(from static to mild user activity), while the signal treatment
in dynamic cases (from mild to intense activities) requires
high computational resources (e.g. the effect of the segment
acceleration is a ”noise” to be minimized with a complex
dynamic filtering). In this paper, a new strategy for arm
movement recording is introduced. Upper limb CE sensors

detect local deformations on the fabric close to joints, while
accelerometers measure the body segments inclinations. A
sensory fusion methodology and algorithm are described,
leading to enhanced performance in limb gesture reconstruc-
tion.

II. MATERIALS AND METHODS

In the wearable sensing system we developed, the arm
movement is estimated by using information coming from
both CE sensors and two accelerometers, respectively placed
on the arm and the forearm. CE sensor systems can be di-
rectly smeared or knitted onto the fabric and can be arranged
in different topologies. Thanks to their piezoresistive prop-
erties, CE textile sensors are able to measure strain fields.
Accelerometer system is able to detect the mutual inclination
between two or more frames fixed with sensor elements.
While the use as inclinometer is trivial at rest or in rectilinear
uniform motion by evaluating the coordinates of ḡ in the
local accelerometer frames, obtaining the same results in case
of movement is more difficult because the sensor measure-
ment is affected by the instantaneous acceleration ā [6]. To
eliminate ā contribution, a Kalman-based estimator capable
of extracting only the ḡ components has been developed.
Unfortunately this algorithm is not robust with respect to
the perturbations induced by the external environment. Data
fusion between the two technologies endorses the obtained
system with more robustness with respect to perturbations.

A. IMUs, Kalman filtering and ḡ component extraction

An accelerometer measures the acceleration and local
gravity it experiences. Considering a calibrated triaxial ac-
celerometer (i.e. offset and sensitivity are compensated and
the output is expressed in units of |g|), the output signal
contains two terms and it is given by ā − ḡ, where ḡ
is the component due to the gravity and ā is due to the
system inertial acceleration, both of which are expressed
in the accelerometer reference frame. IMUs employed in
this work are WID-5 developed by ADATEC srl [7]. The
module is provided with a tri-axial accelerometer, a bi-
axial gyroscope and a wireless communication unit. The
gyroscopic components have not been taken into account for
the data fusion with CE sensors. Hereafter, we will generally
denote with IMU or inertial sensor only the accelerometric
information from the WID-5 module. In static or rectilinear
uniform conditions, only the factor due to gravity is present
and the inclination of the accelerometer with respect to the
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vertical is measured. In dynamic conditions, an estimation
of the inclination is unreliable only by using the raw ac-
celerometer signal since the inertial acceleration is added to
the gravity term. This estimation error gets more important as
the sensor undergoes faster movements (for example, during
the measurement of a subject in running or jumping). In
literature, the inclination is commonly extracted by low-pass
filtering the accelerometer signal with a very low cut-off
frequency (< 1Hz) [8], [9]. In this way, no negligible signal
frequency contents are lost and high delays are introduced.
To perform a reliable estimation of body segment inclination,
a new algorithm based on a Kalman filter [10] was designed
and implemented: this technique was described in [11] and it
was validated in the detection of operators falls to the ground.
Our technique allowed a reliable real time estimation of body
inclination even during intense activities.

B. CE strain sensor model and dynamic performances
CE composites show piezoresistive properties when a

deformation is applied. They can be integrated into fabric or
into other flexible substrate and employed as strain sensors.
CE we used is a commercial product by WACKER Ltd (Elas-
tosil LR 3162 A/B) and it consists of a mixture containing
graphite and silicon rubber. A complete characterization of
the CE quasi-static behavior can be found in [12]. The overall
error which comprehend electric noise and low frequency
hysteresis, characterizing the measurement is estimated to
be 2.5 %. From a dynamic point of view, the non-linear
differential model fitting the CE behavior, described in [12],
has been modified to account for the following properties :

i Both in cases of deformations which increase the
length of a CE specimen and in cases of deformations
which reduce it, two local maxima greater than both
the starting value and than the regime value occur.

ii The amplitude of the overshoot peaks increases with
the rate of strain l̇(t).

iii When the CE is motionless after a solicitation, its
resistance versus time can be approximated by a linear
combination of exponential functions. The transient
time depends on the properties of the sensor and does
not depend on the applied stimuli [12].

iv When the CE specimen undergoes a (fast) periodical
stretching, an exponential envelope-trend transient time
leading up to a periodical output is observed.

To realize a model able to account for all these phenom-
ena, let us consider the map defined as:

g(t) = a0 + a1 l(t) + a1 l̇(t) + a2 l̇
2(t) (1)

where a0, a1, a2 and a3 are nonzero real numbers de-
pending on the CE properties. Relationship (1) is aimed at
modeling the non linearity and the length rate dependence in
the sensor behavior described in (i) and (ii). Let us consider
now a second-order map which can account for properties
(iii) and (iv). In terms of a Laplace transform, it can easily
be obtained as:

H(s) =
s− β0

(s− α0)(s− α1)
(2)

where β0, α0 and α1 are three complex numbers having the
real part smaller than 0, and the real part of β0 is greater
than the real parts of the poles α0 and α1. In time-domain
the complete transfer function, obtained by combining h(t)
and g(t), is given by:

R(t) =
α0eα0t − α1eα1t

α0 − α1
Ṙ(t0) +

α0α1(eα0t − eα1t)

α0 − α1
R(t0)

+

∫ t

t0

(α0 − 1)eα0(t−τ) − (α1 − 1)eα1(t−τ)

α0 − α1

(
d g(τ)

dτ
− β0g(τ)

)
dτ

(3)

C. Sensor fusion strategy and CE sensor model improvement

Information deriving from accelerometers used as incli-
nometers presents the uncertainty described in section II-
A, mainly due to the effect of inertial acceleration that the
algorithm of gravity extraction is not able to compensate.
To assess the accuracy of the accelerometer measurement,
several criteria of goodness can be employed. The most
used in literature is based on the the Signal Magnitude Area
(SMA) index [13]. Inclination extracted from the accelerom-
eter is considered reliable if SMA is smaller than a fixed
threshold ε which depends on the usage limits. When the
SMA index is greater than ε the considered sensor is affected
by external perturbations which invalidate the measurement.
To improve the overall system performances in dynamical
conditions, an ad hoc strategy based accelerometer/CE sen-
sory fusion was developed. Accelerometer perturbations, due
to environment forces, typically occur as signal spikes (for
example during the measurement of the arm movement, if the
subject simultaneously walks). For this reason, perturbation
frequency components are poorly overlapped with the ones
of the movement to be detected. CE sensor signal is compu-
tationally expensive to be interpreted for the complexity of
the dynamical model describing their behavior and reported
in section II-B. On the other hand, CE sensor signal is
not affected by inertial acceleration due to external force
perturbations, thus its frequency content is highly correlated
to the one of the movement to be detected. According
to these preliminary remarks, an adaptive accelerometer
filtering, has been implemented. The filter has an adaptive
bandwidth computed using the signal derived by CE sensors
and it constitutes the core of the data fusion. According to
this strategy, in figure 1 the procedure aimed at extracting
the joint angle of a one-DOF kinematic chain is represented.
Two three-axial accelerometers are placed on the bones
which match the considered joint and a CE sensor is placed
across the joint. The latter sensor undergoes a strain field
when the joint flexes. Signals deriving from IMUs and CE
are processed as shown in figure 1 and described in the
following:
• The blocks KFi are Kalman-filters that instantaneously

transform the signal deriving from IMUs into the three
components of ḡ evaluated in the frame fixed with
the sensor by neglecting the real acceleration ā and
adaptively filter the three signals by using the frequency
ω related to the frequency content of the CE signal.
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• The rotation R(θ)ḡ2 of the vector ḡ2 is performed in
order to match the orientation of ḡ1 and ḡ2 (θ represents
the lagrangian coordinate of the joint).

• The error e(θ) = ḡ1 −R(θ)ḡ2 is computed.
• Starting from e(θ), a new angle is computed through an

iterative procedure. If e(θ) = 0 the old value for θ is
held.

• The output θ is used to estimate the length l̄ of the CE
sensor through a joint model.

• The estimated l̄ is used as the fictional output of a
Kalman estimator (KfL) whose status is the vector of
the CE model parameters. This step is aimed at refining
the knowledge of the CE sensor properties, described in
equation (3).

• The inverse of the CE model (block M−1
CE) is used to

extract, through the block Fr.E. the main frequency
content ω, used for the accelerometer signal filtering

Fig. 1. A functional schema of the data fusion and the CE model upgrade

The blocks M−1
CE and Fr.E. operate as follows. CE sensor

length l(t) is estimated and its Fast Fourier Transform FFT
is computed by block Fr.E.. By using the spectrum L(iω) of
l(t), the frequency ω which realizes the 10% of the spectrum
amplitude maximum is determined. ω is then employed
to set the parameters of the adaptive filters. To archive
this, a Kalman estimator having the CE model parameters
as state variables has been implemented in KFi. In this
way, the behavior knowledge of the employed CE sensor
is continuously improved by the described feedback.

III. WEARABLE SYSTEM FOR ELBOW MOVEMENT
DETECTION

The sensory fusion algorithm has been tested on a simple
prototype aimed at the reconstruction of the elbow flexion-
extension (Fig. 2). The described method has been applied
to a subject during walking. Walking induces on IMUs two
different types of perturbation in the movement analysis. The
first one is due to arm oscillations connected to the gait,
while the latter is related to environment forces, such as
ground reactions. Two accelerometers have been placed on
the posterior side of the forearm, by the distal radial-ulnar
joint and on the medial side of the arm, close to the deltoid
tuberosity. The two inertial elements have been oriented and

calibrated to detect shoulder and elbow movements on the
sagittal planes as rotations about the local y axis. A CE strain
sensor is placed by the humerus-ulnar joint and complete the
sensor system. When the elbow performs a flexion, the CE
sensor undergoes a strain. To determine a model for humerus-
ulnar joint, used in the block θ2l̄ described in section II-C,
the elbow has been considered as a ginglymus joint with a
fixed radius.

Fig. 2. Sensor placement in the integrated system as described in section
III

IV. EXPERIMENTAL RESULTS AND CONCLUSIONS

This section shows the results of the trial described in sec-
tion III. In figures 3 and 4 the raw and filtered accelerometer
components are plotted. The signal variations on the y axes
are related to the gait of the subject.

Fig. 3. Acceleration components (in |g|-scores Vs. time) deriving from
acc1, placed on the arm. Components are evaluated on the x, y and z axis
of the relative frame. The raw data are represented by the blue graphs, the
dynamic filtered ones are described by the red charts.
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Fig. 4. Acceleration components (in |g|-scores Vs. time) deriving from
acc2, placed on the forearm. Components are evaluated on the x, y and z
axis of the relative frame. The raw data are represented by the blue graphs,
the dynamic filtered ones are described by the red charts.

Fig. 5. Signal obtained by the CE sensor (Voltage Vs time), used to
determine the filter cutoff frequency

They have the same trend and they are removed by the
sum block in figure 1. x and z components of the accelera-
tions contain the information necessary to reconstruct the
elbow movement during the experiment. The raw signals
deriving from the Kalman estimators of the accelerometers,
containing errors due to the interaction with the environment
having spike form, are treated by the adaptive filter settled
by the CE sensor (reported in figure 5).They are compared
to determine the rotation matrix R(θ) and the searched joint
angle θ via an iterative procedure. Finally, in figure 6, a
comparison between the joint angle estimated by the sensory
fusion and by a commercial electrogoniometer (Biometrics
LTD) is showed. The comparison highlights a maximum
errors between the two measurement of 5◦, While the root
mean square error is of order of magnitude of 1◦.

Fig. 6. A comparison between the sensory fusion system response and a
the output of a commercial electrogoniometer by Biometrics, placed across
the elbow.
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