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Abstract— A motorized upper extremity orthosis based on
the passive WREX system is being developed. The orthosis is
a 4 dof arm controlled by user residual force inputs. The arm
is intended for people with neuromuscular weakness due to
muscular dystrophy or spinal muscular atrophy. Previous work
determined that actuation in parallel with gravity balancing
springs required less torque than actuation in series. Compli-
ance is achieved by using a series elastic actuator (SEA) by
placing torsional springs between the motors and the WREX.
A torque control was implemented on the SEA at the joint
level. The response of the control law was characterized without
disturbances. The SEAs were then attached to the orthosis to
test the response with disturbances, and the control provided
accurate joint torques.

I. INTRODUCTION

This paper presents a torque controller for series elastic

actuation of an assistive device under human direction.

The assistive device is the Wilmington Robotic Exoskeleton

(WREX), which is a gravity balanced upper limb orthosis

for children with muscular weakness such as musclular

dystrophy and spinal musclular atrophy. The WREX has four

degrees of freedom to allow full range of motion, which is

assisted by gravity balancing elastic bands [4]. Typically, the

WREX is attached to a wheelchair or to a body jacket. A

picture of a passive WREX is shown in Fig. 1. WREX is a

commercial product (JAECO Orthopedic, Hot Springs, AR).

Fig. 1. Subject wearing the WREX
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An external power source has been added to the WREX

to overcome two current problems [3]:

1) A child with muscular weakness often has difficulty in

raising his arm above his head, even with the WREX.

2) The child cannot lift a substantial weight, because the

device only balances the mass of the child’s arm.

Series elastic actuators were introduced to address these

two issues, while providing softness for the user and accurate

torque control. The control of SEAs has evolved through

significant prior research. In 1986, Spong presented a method

to eliminate the effect of elastic joints [5]. Pratt was one of

the first to intentionally use elasticity [2]. Wyeth suggested

using the motor as a velocity source instead of a torque

source [11]. Series elastic actuators have been used in a

number of exoskeletons because of the inherent compliance

[7] [1]. Reinkensmeyers has actuated the WREX using

pneumatic actuators, however, the pneumatic actuators were

difficult to control due to non-linear behavior. Also, the

device targeted adult stroke patients in rehabilitation, which

is a different population group and task definition than the

target of the work in this paper [9]. Hydroelastic actuators

have also been designed recently for exoskeletons, however

this was not deemed appropriate for the WREX [6].

II. MATERIAL AND METHOD

A. Motorized WREX

The motorized WREX developed for this project is shown

in Fig. 2. It consists of 4 degrees of freedom - 2 at the

shoulder and 2 at the elbow. The joints are partitioned so that

two (elbow elevation and shoulder elevation) are anti-gravity;

and 2 (elbow and shoulder rotated in the horizontal plane)

are not affected by gravity. This configuration is retained

from the passive WREX [4]. The two anti-gravity joints are

actuated in a hybrid set up which comprizes of elastic bands

and SEAs. The other two joints are passive. An ATI(ATI,

Apex, NC) force/torque sensor is placed between the user

and the powered WREX. The goals of the project is to

measure the user intention force and apply the appropriate

actuation to assist the user in moving easily with or without

a weight at the hand. The control method was tested in

Simulink as well as in experiment using xPC in Matlab.

The experimental setup is shown in Fig. 5. The motor is

a FaulHaber brushed DC motor type 2342 S 012 CR with a

134:1 gear head. The motor is powered using an Advanced

Motion Control 12A8 amplifier. A US Digital E4P Optical

encoder recorded the motor joint angle. The device was

connected to a target PC through a NI PCI-6040E and a NI-

6601 DAQ board. It was controlled at 1000Hz in realtime

by Matlab xPC.
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Fig. 2. Experimental setup of WREX with an SEA at the shoulder and
elbow joint

B. Series Elastic Actuators

A series elastic actuator is used to create softness for

the user as well as achieve accurate torque control. Torque

control is used because the series elastic element acts as

a natural, compliant torque sensor. The output torque can

be measured by multiplying the angular displacement of the

spring by its stiffness. The measured torque can be used as

a feedback signal. A torsion spring is the elastic member

that connects the motor to the device Fig. 3. The equation

Fig. 3. Schematic of Motor

of motion for the motor is:

τm = Jmθ̈m +Bmθ̇m +Ks(θL − θm) (1)

where τm is the motor torque, θm is the motor angle, θL is

the load angle, Ks is the spring stiffness and Jm and Bm

are the effective motor inertia and damping, which include

the gear ratio. In this section, θL is held constant and is

considered a disturbance.

C. Controller

The control method uses a PI controller with velocity

feedback, similar to the control suggested by Wyeth [11],

with an additional feedforward term. This feedforward term

is equal to the desired torque output. In an ideal model,

this term should cause the output torque to be equal to

the input motor torque under steady state conditions. To

compensate for dynamics, model uncertainty, and friction,

the PI loop corrects errors in the desired torque, while the

velocity feedback increases the damping, to allow the gains

of the PI control to be sufficiently high to produce accurate

torque control while maintaining stability. The block diagram

of the control architecture is shown in Fig. 4

Fig. 5. Picture of Experimental Setup

D. Results

Several physical parameters were determined experimen-

tally, Jm = 0.01 kgm2, Bm = 0.21 Nm/(rad/s), and

Ks = 2.51 Nm/rad. The gains were determined experi-

mentally as Kp = 30 and Ki = 10 for the outer PI control

and Kv = 1.2 for the velocity feedback. First the step

response was found, which is shown in Fig. 6. Second, the

frequency response was determined using a chirp signal. The

experimental results were fitted to a transfer function using

the system identification toolbox in Matlab. The results are

shown in Fig. 7
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Fig. 6. Step Response of Control on Series Elastic Actuator

From the step response, the experimental controller has

a settling time of approximately 0.15 seconds with minimal

steady state error. From the frequency response in Fig. 7,

the controller has a bandwidth of about 20 rad/s. There is

a slight discontinuity shown in the experimental response

around 20 rad/s because the response was fitted in two
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Fig. 4. Block Diagram of Torque Control
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Fig. 7. Bode Diagram of Torque Control on Series Elastic Actuator

parts, which overlap, to accurately characterize the motor

non-linearities. In both figures, the difference between the

simulated and experimental response is due to unmodeled

time delay and motor saturation. It has been shown that the

controller provides reasonable torque control up to 20 rad/s
or 3.18 Hz in the absence of disturbance.

To test the controller with disturbances, the SEAs were

attached to the WREX shown in Fig. 2.

The ATI force sensor was attached to a table used to input

torque commands to the motors. The sensed force of the

operator was transformed into joint torques, while the WREX

with attached SEAs was free to move. One example of the

desired torque and the torque produced by the SEA for both

motors is shown in Fig. (8). It can be seen that the proposed

control provides accurate torque control at the joints even

with dynamic interaction between the joints.

III. DISCUSSION

Based on the needs of the current WREX, it was decided

to add a series elastic actuator to provide a soft feel for the

user and allow torque control. However, the added flexibility

introduced new control challenges. The presented PI con-

troller with velocity feedback was found to provide accurate
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Fig. 8. Sample torque trajectory during human interaction. The desired
torque is from the force sensor

torque control in the presence of disturbances within the

bandwidth needed for human motion. The controller reduces

the series elastic actuator as a torque source, which any type

of controller, such as PD, computed torque, or impedance

could be used as a higher level control. The controller is

similar to those presented by Pratt [2], Wyeth [11], and

Vallery [8]. This is comparable to the 3.5 Hz bandwidth

of the Pneu-WREX [10]. This is acceptable for human

interaction, because the frequency range of a person with a

disability will be substantially lower than the normal human

motion of 4-8 Hz [1]. Further research could implement these

previously suggested strategies on the WREX and compare if

one controller provides more accurate control then the other.

Now that the WREX has an accurate torque source, a higher

level controller can be implemented to control the interaction

between the user and the device. This higher level controller

will address the two mentioned problems of limited range

and limited carrying ability, as well as stability.

The subsequent steps in the WREX project will be to use

the force sensor when attached to the orthosis and control

the interaction between the user and the WREX to address

the two previously mentioned shortcomings: limited range
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and limited strength.

IV. CONCLUSION

A Series Elastic Actuator was added to the WREX. A PI

control law with torque feedforward and velocity feedback

was presented and tested. The inner torque control was able

to provide accurate torque control up to 20 rad/s with the

load angle fixed. It was shown that the inner loop can control

the torque when attached to an unrestrained WREX.
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