
 

  

Abstract—Recent experimental evidenc
glial cells are more than just supporting c
they play an active role in signal transmis
We herein propose to investigate the imp
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using three approaches: A parametric mod
account the underlying mechanisms of t
system, a non-parametric model that extract
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We use the EONS (Elementary Objects
System) platform, a highly elaborate sy
platform to investigate the influence of astr
transporters on postsynaptic responses in th
environment of a tri-partite synapse. The s
obtained using EONS are then used t
parametric model that captures the esse
glutamate dynamics. The structure of the
model we use is specifically designed for e
implementation using ultra-low power sub
building blocks. The utilization of the app
allows us to build large-scale models 
interaction and consequently provide useful
modulation during normal and pathological 
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hundreds of neuronal processes and tens 
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techniques to investigate chemical signal
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mentioned parametric model. Finally, t
implemented in hardware for ultra-lo
computation using subthreshold CM
polynomial building blocks that serve as 
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As mentioned above, our multi-modal a
of three steps: parametric modeling, 
modeling and hardware implementation. 
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A. Parametric Computational Model 
Parametric models inherently take 

knowledge from literature and experimenta
these data, a kinetic model of the astr
transporter was added to the EONS sy
platform to explore how glutamate 
modulated in a tripartite synapse comprise
post-synaptic and astrocytic componen
synaptic modeling platform allows a det
exploration of glutamate dynamics at a sin
contains a large number of kinetic models 
channels and second-messenger pathways
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where L is a matrix of the LF samples,  D 
EPSC samples and C is the vector containi
coefficients ck. Using least square error est
increased estimation accuracy in the prese
reduces the requirements in terms of length
data-records [9]. Additionally, the parame
adjust the decay rate of the LF. Therefore, 
glutamate transporter in the tripartite sy
modified, the expansion coefficients and p
to account for this modification.  

C. Neuromorphic Hardware Model 
A neuromorphic hardware implementatio

build novel processing systems that mimic
processing methodology in its compactness
most importantly, power-efficiency. It can a
to implement multiple-input-multiple-o
implantable brain-on-chip systems [10] that
chip spike processing.  
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processing.  Peripheral digital circuitry c
allow for more flexibility and programmabi
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Fig.  3.  Circuit Diagram of the CMOS subthreshold 
exponential block. 
 

Fig. 4.  Block level diagram of weighted LF approxim
EPSC.  
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where κ is the inverse of the su
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at room temperature). To implemen
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Fig. 6. Normalized rms error in percent vs. the number of Laguerre 
Functions used to approximate the EPSC due to a single action potential 
without transporters. 
 

Finally, the Laguerre hardware model was designed and 
simulated in subthreshold 0.18 µm TSMC CMOS 
technology. The simulation result for typical corner of the 
2nd order LF (n=1) circuit (blue) as compared to the ideal LF 
(red) can be seen in Fig. 7. The normalized rms error 
between the ideal curve and the circuit implementation result 
is 3.25%. The power consumption of each LF building block 
from n=0-3 is less than 15nW. Each block consumes power 
only if there is an action potential input and during the time 
the output is computed. An implementation with the first 
four LFs has around ten of these blocks and a large scale 
replication of these blocks linearly increase the area and 
power consumption, depending on the desired scale. 
Problems of variations and mismatches are alleviated by 
applying proper calibration schemes [12]. 

 

 
Fig. 7.  Ideal 2nd Order Laguerre Function compared to the simulated 
CMOS subthreshold implementation.  

IV. CONCLUSION 
In our multi-modal approach, we leveraged the 

advantages of parametric and non-parametric modeling as 
well as neuromorphic hardware to efficiently model glial-
neuronal interaction. We developed a kinetic schema for the 
glutamate transporter and incorporated it into the EONS 
synaptic modeling platform to explore its effects on synaptic 
transmission. We then implemented a non-parametric system 
using the Laguerre polynomial expansion method to 

replicate input-output characteristics of the parametric 
model. Finally, this model was implemented in CMOS for 
ultra-low power fast computation using subthreshold ultra-
low power building blocks that serve as a foundation for 
future large scale neuron-glia systems.  

In our future work we will extend the non-parametric 
model to capture multiple input pulse non-linear addition 
and build a compact low power hardware model that will 
allow us to test several stimulation paradigms. We herein 
focused our attention on the effect of astrocytic glutamate 
transporters; we plan on broadening our research to 
incorporate more glial mechanisms to make this system 
more accurate to provide insights on glial modulation during 
normal and pathological neural function.   
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