
Abstract— Majority of the recently developed brain computer 
interface (BCI) systems have been using visual stimuli or visual 
feedbacks. However, the BCI paradigms based on visual 
perception might not be applicable to severe locked-in patients 
who have lost their ability to control their eye movement or even 
their vision. In the present study, we investigated the feasibility 
of a vision-free BCI paradigm based on auditory selective 
attention. We used the power difference of auditory steady-state 
responses (ASSRs) when the participant modulates his/her 
attention to the target auditory stimulus. The auditory stimuli 
were constructed as two pure-tone burst trains with different 
beat frequencies (37 and 43 Hz) which were generated 
simultaneously from two speakers located at different positions 
(left and right). Our experimental results showed high 
classification accuracies (64.67%, 30 commands/min, 
information transfer rate (ITR) = 1.89 bits/min; 74.00%, 12 
commands/min, ITR = 2.08 bits/min; 82.00%, 6 commands/min, 
ITR = 1.92 bits/min; 84.33%, 3 commands/min, ITR = 1.12 
bits/min; without any artifact rejection, inter-trial interval = 6 
sec), enough to be used for a binary decision. Based on the 
suggested paradigm, we implemented a first online ASSR-based 
BCI system that demonstrated the possibility of materializing a 
totally vision-free BCI system. 

I. INTRODUCTION

RAIN-COMPUTER INTERFACE (BCI, sometimes referred to 
as brain-machine interface) is a technology that translates 

brain signals into simple commands that can control external 
devices or into messages with which one can communicate [1]. 
The major targets of BCI systems have been disabled 
individuals who cannot freely move or control specific parts 
of their body because of serious neurological disease or injury, 
such as amyotrophic lateral sclerosis (ALS, also referred to as 
Lou Gehrig’s disease) or brainstem stroke.  
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To translate the neural signals acquired from the patients into 
appropriate commands, various experimental paradigms and 
tasks have been introduced, such as P300 speller [2]-[4]; 
steady state neural responses elicited while one is gazing a 
certain visual stimulus flickering with a specific frequency 
[5]-[7]; mental tasks associated with motor imagery [8]-[10]; 
or mental calculation [11], [12]. Most of the paradigms listed 
above use visual stimuli, visual feedback, or both, and are 
thereby applicable only to patients whose visual function is 
not impaired. 

In practice, however, some patients with severe neurological 
disorders, such as ALS and completely locked-in state (CLIS), 
often have difficulty controlling their voluntary extraocular 
movements or fixing their gaze on specific visual stimuli. 
Even for those who have normal visual function, gazing at 
stimuli for a long time can easily cause fatigue or loss of 
concentration. A recent experimental study demonstrated that 
the performance of the P300-based speller paradigm can be 
substantially influenced by eye gaze [13], which strongly 
suggests that the use of visual stimuli or cues might not be 
appropriate for those who have difficulty in gazing at specific 
target stimuli. Therefore, developing new BCI paradigms that 
are not dependent on visual stimuli remains one of the 
challenging issues in modern BCI research [14]. 

One of the alternative paradigms to build a vision-free BCI 
system has been auditory based ones. One of the previous 
research conducted by Lopez et al. [15] investigated whether 
the auditory steady-state response (ASSR) is modulated by 
auditory selective attention (ASA) to a specific sound stream 
and discussed the possibility of using the ASSR as a new BCI 
paradigm. In six out of eight participants, the spectral density 
of alpha rhythm was inversely proportional to that of the 
modulation frequency for the left ear (38 Hz), providing 
evidence that selective attention can modulate ASSR. They 
also showed, using the self-organizing map (SOM) method, 
that the attended and ignored conditions could be clearly 
classified into two clusters, demonstrating the possibility of 
using ASSR modulated by auditory selective attention as a 
new BCI paradigm.  

In the present study, inspired by the pilot study of Lopez et al. 
[15], we further investigated whether ASSR can be a feasible 
feature for a practical BCI system by implementing a modified 
BCI paradigm to classify one’s auditory selective attention 
and by evaluating the classification accuracy of the BCI 
system. Indeed, to the best of our knowledge, our paradigm is 
one of the first auditory BCI paradigms that did not use any 
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visual information during the entire experiment. Furthermore, 
we used the proposed paradigm and analysis methods to 
implement an online ASSR-based BCI system to further 
demonstrate whether our paradigm could be used as a 
successful BCI paradigm. 

II. METHODS

A. Participants  

Six healthy volunteers (one female and five male, mean age 
25.0 ± 5.0 years) with no neurological or psychiatric disorders 
or previous head injury were recruited among the graduate 
and undergraduate students in the Department of Biomedical 
Engineering of Yonsei University. Before the experiment, all 
participants were given a detailed, written summary of the 
experimental procedures. Participants signed a written 
consent and received adequate reimbursement for their 
participation. The study protocol was approved by the 
Institutional Review Board (IRB) of Yonsei University, 
Korea. 

B. Auditory Stimuli 

We chose two frequencies, 37 Hz and 43 Hz, as the 
modulation frequencies (beat frequencies in the present study). 
The carrier frequencies of the two auditory stimuli were set to 
2.5 kHz and 1 kHz, respectively, so that the subjects could 
easily distinguish each sound stream [15]. We used pure tone 
burst trains; each generated using MATLAB (The 
MathWorks, Natick, MA, USA, Version 7.7.0) at a sampling 
rate of 44,100 Hz. The pulse widths of the 37 Hz and 43 Hz 
pure tone pulses were 13.5 ms and 11.6 ms, respectively. The 
duration of each trial was 20 seconds.  

C. Experimental Protocols 

Participants sat in a comfortable armchair in front of a pair 
of speakers and were asked to adjust the position of the chair 
to a comfortable location while maintaining equal distance 
(less than 60 cm from the speakers) from the two speakers (see 
Fig. 1). In each trial, the participants were presented with 2.5 
kHz tone burst trains with 37 Hz beat frequency for their left 
sound field and 1 kHz tone burst trains with 43 Hz beat 
frequency for their right sound field. Subjects were asked to 
close their eyes and remain as still as possible, particularly 
during the acquisition intervals.  

One segment of the auditory stimulus lasted for 20 seconds 
and a random interval of 6–10 seconds was inserted between 
each trial. Two seconds before the stimulus onset, five pulses 
of pure tone sounds were generated randomly from either the 
left or right side, to indicate which sound source they were to 
concentrate on. The five pulses of pure tone sounds had the 
same carrier frequency and beat frequency as the main 
auditory stimulus (2.5 kHz carrier frequency and a 37 Hz beat 
frequency for the left sound field; 1 kHz carrier frequency and 
a 43 Hz beat frequency for the right sound field) to help the 
participants recognize the direction of the stimulus more 
accurately. Our paradigm was implemented with TeleScan 2.2 

for Windows (Laxtha, Inc., Daejoen, Korea), which was also 
used for the EEG data acquisition. 

Each session consisted of 25 trials and lasted for 
approximately 10 minutes. Before the recording, one training 
session was performed to familiarize participants with the 
paradigm. The main experiment was performed in two 
sessions with a 10-minute inter-session rest. In total, we 
acquired EEG data sets for 50 trials: 25 for selective attention 
to the left-sided stimulus and the other 25 trials for selective 
attention to the right-sided stimulus. 

D. Data Acquisition and Processing 

Electrodes were attached on the participants’ scalp 
according to the international 10-20 system. The EEG signals 
were acquired at four electrodes (Cz, Oz, T7, T8), which 
represent the motor, visual, and auditory cortical areas, using a 
multi-channel EEG acquisition system (WEEG-32, Laxtha 
Inc., Daejeon, Korea) in a dimly lit, soundproof room. The 
sampling rate was set at 512 Hz in all experiments. The 
ground electrode was placed behind the left ear with the 
reference electrode on the opposite side. 

The raw EEG data were segmented into 20-second epochs 
from the beginning of the main auditory stream. No 
preprocessing methods, such as re-referencing, band-pass 
filtering, or artifact rejection, were applied to the present 
analysis. The frequency spectrums of each epoch were 
calculated using the fast Fourier transform (FFT) algorithm 
with a 1 second long sliding window with a 50% overlap. The 
estimated frequency spectrums were accumulated and 
averaged over time for each epoch. 

E. Feature Selection and Classification 

As candidates of feature vectors, we first evaluated the EEG 
spectral densities of each electrode averaged over 37 ± 1 Hz 
(denoted as Cz37, Oz37, T737, T837) and 43 ± 1 Hz (Cz43, Oz43, 
T743, T843). We also evaluated the ratios between all possible 
pairs of spectral densities evaluated at the same modulation 

Fig. 1. Overall experimental environment; A schematic diagram to 
elucidate the experimental environment. Two speakers were 
placed 80 cm apart. The participants were asked to adjust the 
position of the chair to a comfortable location while maintaining 
equal distance (less than 60 cm from the speakers) from the two 
speakers. The participants were presented with 2.5 kHz tone 
burst trains with a 37 Hz beat frequency for their left ear and 1 
kHz tone burst trains with a 43 Hz beat frequency for their right 
ear. 
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frequency (Cz37/T737, Cz37/T837, Cz37/Oz37, T737/T837, 
T737/Oz37, T837/Oz37, Cz43/T743, Cz43/T843, Cz43/Oz43, 
T743/T843, T743/Oz43, T843/Oz43) as well as the ratios between 
the spectral powers of each electrode evaluated at different 
modulation frequencies (Cz37/Cz43, T737/T743, T837/T843, 
Oz37/Oz43).  

To investigate the changes in classification accuracy with 
respect to the number of feature vectors, we calculated the 
classification accuracy for all possible combinations of the 24 
feature candidates listed above, assuming the number of 
selected features to be one, two, or three. To show the 
influence of the analysis window sizes (or analysis interval 
sizes) on the classification accuracy, we also tested different 
analysis window sizes (2 - 20 seconds from the main auditory 
stimulus onset with a step size of 1 second).  

For the classification, we used a 10-fold cross-validation 
method considering the small number of trials. We first 
divided the 50 trials into 10 equal-size folds, and for each 
validation 45 trials were used as a reference data set and the 
other 5 trials were used as a test set. For each trial of the test 
set, Euclidean distances from the average feature vectors 
(each averaged to the left and right stimuli) computed on the 
reference data set were compared, and the trial was assigned 
to a class based on whichever had the shorter distance. The 
cross-validation was done separately for each of all possible 
feature sets. 

F. Online Experiment Procedure 

We also implemented a pilot online ASSR-based BCI 
system and tested it to one of the participants (JP, female, 24 
years old). Right before the online experiment, we selected an 
optimal feature set from a preliminary offline experiment. The 
experimental paradigm and analysis methods used for the 
feature selection were identical to those of previous offline 
experimental studies, except that the location of the reference 
electrode was moved from left ear to the participants’ 
forehead. This change was made to avoid the potential 
influence of the reference electrode on the laterality between 
the electrodes T7 and T8. Since the participant was asked to 
close her eyes during the entire offline and online experiments, 
we confirmed that EOG artifact did not affect the recorded 
signals.  

In our online experiment, the participant was instructed 
verbally to attend one of the auditory stimuli, left stimulus or 
right stimulus, in a random order. After the instruction was 
made, the experimenter manually turned on a switch that starts 
generating two different tone burst trains from speakers 
located on the left and right sides of the participant. Then, the 
main computer system started recording the EEG signals, and 
at the same time calculated the values of 3 feature vectors. 
After 10 seconds from the beginning of the recording, our BCI 
system classified the participant’s selective attention in real 
time and displayed the decision on the monitor screen so that 
the instructor can evaluate the result. All the analysis methods 
were identical to those used in the offline analyses. 

III. RESULTS

Fig. 3 shows the variations in classification accuracy 
averaged over the six participants with respect to the analysis 
window sizes and the number of feature vectors. We observed 
that higher classification accuracy could be obtained when 
larger numbers of feature vectors were used for the 
classification. The classification accuracy nearly 
monotonically increased with respect to the analysis window 
sizes, but after approximately 10 seconds the accuracy no 
longer increased. Since short analysis window size guarantees 
more possible commands per minute, the analysis window 
size of approximately 10 seconds was the most appropriate.  

Fig. 4 shows variations in the classification accuracy 
evaluated for each participant with respect to the analysis 
window size when three feature vectors were selected. The six 
individual graphs show similar and consistent shape with 
those of Fig. 3 and show very small differences in the overall 
averaged classification accuracies, with a standard deviation 
of only 2.11%. The maximum classification accuracy of each 
participant was found at different analysis window sizes and 
varied from 80% to 92%. The average of the maximum 
classification accuracy of each subject was 86.33 ± 3.54%, 
and the analysis window size that resulted in the highest 
accuracy was 14.00 ± 2.94 seconds. Subject SB showed the 
highest classification accuracy value (92%) among all of the 
participants, while subject JP showed the highest overall 
classification accuracy (81.26%). Although our 

Fig. 3. Classification accuracy averaged over six participants with 
respect to different analysis window sizes and different numbers 
of feature vectors (1, 2, and 3). 

Fig. 4. Classification accuracy for each participant with respect to the 
analysis window sizes when three feature vectors were selected.
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cross-validation results using small number of trials might be 
somewhat biased for specific feature sets, the high 
classification accuracy consistently exceeding the chance 
level (50%) demonstrates the possibility of using ASSR for 
the binary decision of BCI. 

The online experiment consisted of 14 continuous trials (7 
for right stimulus and 7 for left stimulus) and showed a fair 
classification accuracy of 71.4%. Since the participant was 
asked to close her eyes during the experiment, she could not 
have any information on whether the previous decision was 
right or wrong. In our pilot online experiment, we did not 
provide the participant with any feedbacks as they might affect 
her attention. The readers can watch the full video of our 
online experiment at http://cone.hanyang.ac.kr/BioEST/Kor/ 
research/update/ASSR_BCI.avi.  

IV. DISCUSSIONS

In the present study, we investigated whether ASSR 
modulated by selective attention to a specific sound stream 
can be used to create a practical auditory BCI system, with the 
goal of classifying the intentions of individuals who have 
difficulty in controlling their vision. Inspired by the 
conventional SSVEP-based BCI paradigms that use multiple 
spatially separated visual stimuli with different flickering 
frequencies, we presented the participants with multiple 
spatially separated auditory stimuli with different tones and 
modulation frequencies. In our experiments performed to six 
healthy volunteers, we were able to discriminate which sound 
source the participants were selectively attending to with high 
classification accuracy fairly exceeding the chance level of a 
binary decision (50%), demonstrating the feasibility of using 
ASSR modulated by selective attention as one of the 
promising BCI features.  

Our paradigm has several advantages that are suitable for 
use in practical BCI systems. First, we did not apply any 
complex preprocessing procedures. In fact, we did not even 
use basic filtering or artifact rejection processes, which would 
be advantageous in realizing an efficient real-time BCI system. 
Second, since the paradigm was simple and intuitive, the 
participants could easily understand and get accustomed to the 
target tasks, for which they were only asked to concentrate 
their attention on either the left or right sound source. 
Therefore, the proposed paradigm overcomes one of the 
drawbacks of mental task-based BCI paradigms that require 
complex and time-consuming training processes. Moreover, 
we did not use any visual information during the whole 
experiment, considering that the main targets of auditory BCI 
systems would be patients with advanced ALS or CLIS, who 
have difficulty controlling visual fixation. 
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