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Abstract—New paradigms for brain computer interfacing
(BCI), such as based on imagination of task characteristics,
require long training periods, have limited accuracy, and lack
adaptation to the changes in the users’ conditions. Error poten-
tials generated in response to an error made by the translation
algorithm can be used to improve the performance of a BCI,
as a feedback extracted from the user and fed into the BCI
system. The present study addresses the inclusion of error
potentials in a BCI system based on the decoding of movement-
related cortical potentials (MRCPs). We theoretically quantify
the improvement in accuracy of a BCI system when using error
potentials for correcting the output decision, in the general case
of multiclass classification. The derived theoretical expressions
can be used during the design phase of any BCI system. They
were applied to experimentally estimated accuracies in decoding
MRCPs and error potentials. The average misclassification rate
(n = 6 subjects) of MRCPs associated to the imagination of elbow
flexions at two speeds was 26%, with a bit transfer rate of 0.17.
The inclusion of error potentials, experimentally recorded and
classified with misclassification rate of 20%, led to a theoretical
error rate of 14% with a bit transfer rate of 0.30.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a system that al-
lows communication between the brain and external devices,
without the use of nerves or muscles. The inputs of non-
invasive BCI systems are usually EEG signals. The output
is a decision of action among a set of possible ones (a
command to an external system). The core of a BCI is thus
a classification algorithm, and a training session is used to
build the decision rules that allow the decoding of the user’s
intention. Although the research efforts in this field have
increased substantially in the last decade, the applications are
still limited. New paradigms for brain computer interfacing
(BCI), such as based on imagination of task characteristics,
require long training periods, have limited accuracy, and lack
adaptation to the changes in the users’ conditions. Limited
accuracy and robustness are specific problems in applications
where the tasks to be classified are similar as, for example, for
decoding actions corresponding to the same movement, which
is imagined at different target torques and/or different rates of
torque developments [1][2].

Several authors have shown that error potentials generated
in response to an error made by the translation algorithm can

* Institut de Recherche en Communication et Cybernétique de Nantes
(IRCCyN) - Centrale Nantes, 1 rue de la Noë, 44321 Nantes, France

** Center for Sensory-Motor Interaction, Department of Health Science and
Technology, Aalborg University, Aalborg, Denmark (e-mail: df@hst.aau.dk)

† Department of Neurorehabilitation Engineering, Bernstein Cen-
ter for Computational Neuroscience, University Medical Center Göttin-
gen, Georg-August University, Göttingen, Germany (dario.farina@bccn.uni-
goettingen.de)

be used to improve the performance of a BCI, as a feedback
extracted from the user and fed into the BCI system [3][4][5].
The present study addresses the inclusion of error potentials
in a BCI system based on the decoding of movement-related
cortical potentials (MRCPs). We theoretically quantify the
improvement in accuracy of a BCI system when using error
potentials for correcting the output decision. This is done in
the general case of multiclass BCI. The derived theoretical
expressions can be used during the design phase of any BCI
system. The improvement in the BCI transfer rate is quantified
by the probability of error of the global system based on
the error rates of the classification system and of the error
potential detection process. The error rates of the classification
system are obtained from the classification of experimental
movement-related cortical potentials (MRCPs) corresponding
to the imagination of different modalities of elbow flexion
imagination. The accuracy in detection of error potentials
in single trials is obtained from experimental EEG signals
recorded in the same session as the MRCPs after the display
of a pseudo feedback. The probability of error of the global
system is estimated theoretically from the two sources of error
determined experimentally and for a given decision strategy.

The paper is organized as follows. We will first present the
proposed methods for classification of movement modalities
and detection of error potentials (Section II-A). In Section II-B
we provide expressions of the theoretical performance of the
corrected system. Finally, in Section III we show the results
obtained from experimental signals.

II. METHODS

A. Task classification and error potential recognition

The corrected system is composed of two blocks processing
EEG signals. The first block decodes user intentions from
signals noted EEG1. The second block performs an evaluation
of this decision from signals (noted EEG2) supposed to contain
an error potential if the displayed decision is wrong.

1) Task classification algorithm: The aim of the task
classification algorithm is the decoding of the user inten-
tions from the EEG1 signals. In our experimental protocol,
it corresponds to the discrimination of kinetic parameters
from single-trial MRCPs. For feature extraction, we use the
marginals of the discrete wavelet transform (DWT) [1][2],
that reflect the average signal intensity over dyadic frequency
subbands. The dyadic decomposition is well suited to describe
and discriminate signals whose discriminative information is
mainly at low frequencies since the frequency resolution is
higher for low frequencies than for high frequencies. The
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choice of marginals is motivated by the fact that the analyzed
signals are generally not perfectly time-aligned in realistic
(asynchronous) conditions and, as a consequence, the features
used for classification should only be composed of frequency
descriptors. In order to reduce the dimension of the represen-
tation space and according to the low frequency content of
MRCPs, signals are described by the DWT marginals in the
range 0Hz − 2Hz (4 descriptors). According to our previous
work [1], the classification was performed from EEG recorded
at Cz position, using 2s of signal starting just after the cue.

The classification was performed using a linear SVM [6]
that is considered as a robust classifier even in rather chal-
lenging conditions. If the number of classes n is greater than
2, we use a one-versus-rest (OVR) procedure with n two-class
linear SVMs, each of them separating one class against the rest
of the population. This SVM used for the task classification
is noted SVM1.

2) Detection of error potentials: This section concerns the
analysis of the user reaction to the displayed decision of
the BCI (output from SVM1), in order to estimate if it is
correct according to the detection of an error potential. This
is performed by analyzing the EEG2 signal recorded after
a decision on the task classification is done. When the BCI
system provides a wrong decision, an evoked potential appears
between about 200 ms and 700 ms after the feedback is
displayed [5]. Therefore, we consider the signal in a window
between 150 ms and 650 ms after the display of the response
to decide if an error potential is present. Two approaches
are here proposed and compared: classification and detection,
both in a supervised context. For each approach we use the
channels FCz and Cz , the error potential being characterized
by a fronto-central distribution along the midline [5]. For each
subject, we select the best combination of channels (FCz , Cz ,
or FCz + Cz) by optimizing the error rate on a learning set.

We denote x, a multichannel signal, wrong the class of
signals recorded after a wrong decision (supposed to contain
an error potential), correct the class of signals recorded after
a correct decision, Xw the learning set of signals of the class
wrong, and Xc the learning set of signals of the class correct.

a) Classification approach of error potentials: We use a
linear SVM classifier (noted SVM2). The signal is filtered
by a low-pass filter at 0 − 10Hz and down-sampled from
1024 Hz to 64 Hz. The descriptors are the signal samples
(32 descriptors per channel) [7]. When more than one channel
is used, descriptors of each channel are concatenated.

b) Detection approach of error potentials: With this
approach, when FCz +Cz are used, we convert multichannel
signals into monochannel signals by averaging the two chan-
nels. Alternative approaches of multi-channel detection were
tested (results not shown) but did not provide better results,
therefore simple averaging of the channels was used.

For a given signal x, the detection index I(x) is defined
from the crosscorrelation φx(τ) between the signal and the
averaged potential xw of Xw: I(x) = max{φx(τ), τ ∈
[−50ms, 50ms]}. A strong correlation will translate the pres-
ence of an error potential (class wrong). This index is com-
pared to two thresholds th, tl:
• If I(x) ≥ th the decision of the BCI is estimated as

wrong.
• If I(x) ≤ tl the decision of the BCI is estimated as

correct.
Between thresholds, the detector does not provide a response.
The thresholds are fixed in order to limit under a given value
the false alarm rate, as estimated on the learning set.

B. Theoretical improvement of the BCI system

To calculate the probability of error of the global system,
it is necessary 1) to compute the a posteriori probability of
a class knowing the responses of the task classifier (online
SVM1) and of the detector of error, and 2) to define a decision
strategy from these responses. This is treated in the general
multiclass case.

1) Notations: Figure 1 shows the notations used in this
section.
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The problem is formalized using four random variables:

• Ω andΩ̂ with values in{ω1, . . . , ωn} representing respec-
tively the movement intention and the intention decoded
by the incrementalSVM1 (with n the number of classes),
ω, ω̂ being the corresponding realizations;

• E and Ê with values in{correct, wrong} representing
the accuracy of theSVM1 decision and it’s estimation
by the detector,e, ê being the corresponding realizations;
e = correct if ω̂ = ω elsee = wrong.

2) Posterior probability of a class:We denote:

• PΩ(ω) = Prob(Ω = ω): a priori probability of the class
ω,

• PΩ̂|Ω(ω̂, ω) = Prob(Ω̂ = ω̂|Ω = ω) = PE(e) :
conditional probability of theSVM1,

• PÊ|Ω̂Ω(ê, ω̂, ω) = PÊ|E(ê, e) = Prob(Ê = ê|E = e) :
conditional probability of the detector.

• PΩ|Ω̂Ê(ω, ω̂, ê) = Prob(Ω = ω|Ω̂ = ω̂, Ê = ê) : a
posteriori probability of the classω.

The probability of the classω knowing the response of the
classifier (̂ω) and of the detector (̂e) is given by the Bayes
theorem [8]:

PΩ|Ω̂Ê(ω, ω̂, ê) =
PÊ|Ω̂Ω(ê, ω̂, ω).PΩ̂|Ω(ω̂, ω).PΩ(ω)

PΩ̂Ê(ω̂, ê)
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PΩ̂Ê(ω̂, ê) =

n∑

i=1

PΩ̂|Ω(ω̂, ωi).PÊ|Ω̂Ω(ê, ω̂, ωi).PΩ(ωi)

3) Strategy of decision and BCI error rate:The detector
provides information on the accuracy of the response of the
SVM1, but not the class. If this response is detected aswrong
in the general multiclass case, it is not possible to deduce the
true class even with a perfect detector. So a natural strategy
to integrate the detector in the full BCI system is as follows:
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PΩ|Ω̂Ê(ω, ω̂, ê) =
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• if the detector provides an answer: decision on the class
only if the SVM1 response is estimated as correct. When
the response is estimated as wrong, the subject repeats the
imagination task.

• else, selection of the class according to the decision of
the task classifier SVM1.

According to this strategy, the probability of error of deci-
sion, when the detector provides an answer, corresponds to the
probability that, when the detector indicates correct, the class
ω̂ given by the SVM1 is different from the true intention ω
of the user. We denote it PEr1 :

PEr1 =
∑

i,j
i 6=j

PΩΩ̂|Ê(ωi, ω̂j , correct)

=
∑

i,j
i 6=j

PΩ|Ω̂Ê(ωi, ω̂j , correct)PΩ̂|Ê(ω̂j , correct) (2)

=
∑

i,j
i 6=j

PÊ|Ω̂Ω(correct, ω̂j , ωi).PΩ̂|Ω(ω̂j , ωi).PΩ(ωi)

PÊ(correct)

with PÊ(correct) =
∑

e PÊ|E(correct, e).PE(e) and
PÊ|E(ê 6= e) the probability of error of the detector.

By integrating Presp the probability of response of the
detector, the global error rate becomes:

PEr =
(1− Presp).PE(wrong) + Presp.PÊ(correct).PEr1

(1− Presp) + Presp.PÊ(correct)
(3)

with PE(wrong) the probability of error of the SVM1. In the
case of the classification approach of detection, Presp = 1 and
PEr = PEr1 .

Given the previous decision strategy, the performance of the
corrected system is also characterized by the probability that
the subject has to imagine again the task; it corresponds to the
probability that the detector estimates the SVM1 decision as
wrong when it gives an answer:

Prepeat = Presp.PÊ(wrong) (4)

And the probability for the user to repeat m times the same
task is (Prepeat)

m. The bit transfer rate [9], taking into account
the above probabilities, is calculated for a n classes problem
as:

BpT = [log2(n) + (1− PEr) log2(1− PEr)

+ PError log2(
PEr

n− 1
)](1− Prepeat) (5)

These theoretical formulations will be used in Section III
with realistic values for the sources of error as obtained by
experimental recordings to provide numerical indications on
the advantage in terms of bit transfer rate of including an
error potential detector into the system.

C. Experimental protocol

In order to use realistic values for the sources of error, we
analyze the performance of the task classification algorithm
and error potential recognition on experimental data. Although

the theoretical approach described above is general and can
be applied to a multiclass problem, the experimental analysis
is performed in the simplified case of a biclass BCI on six
healthy subjects. Each subject was asked to perform two motor
imagination tasks, slow and fast right arm flexion (with the
same frequency), according to a visual information (on a
computer screen) on when to imagine the movement. Each
trial consisted of eight time periods, namely focus, preparation,
imagination, hold, rest, error potential focus, and result, and
rest period. After performance of each task the subjects were
presented with a pseudo feedback (slow/fast) that randomly
corresponded to a correct or wrong classification (75% correct
and 25% wrong). A pseudo feedback allows to isolate the
problem of error potential detection from other aspects (such
as the variability in classification results among subjects).
Despite the fact that the feedback was random, the subjects
were informed that the feedback obtained was the result of
the online processing of their mental states by a BCI system.
In total, 120 trials were collected from each subject in two
sets of 60 trials. Trials containing eye movement artefacts or
EMG level above four times the standard deviation of noise
were rejected.

The evaluation of the performance of the task classification
and of the error detector was made by the leave-one-out
procedure with the approaches described in Section II-B.

III. RESULTS

A. Classification of movements
The results of the task classification are presented in Table

I. The error rate, similar for the two classes (slow/fast), was
26% on average over all subjects with a low standard deviation
(4%). The average classification error obtained from these
data will be used as conditional probabilities of the SVM1

PΩ̂|Ω(ω̂ 6= ω).

Table I: Results of the task classification.

Subjects 1 2 3 4 5 6 Average
Error rate 28% 24% 32% 30% 22% 22% 26%

B. Detection of error potentials
The threshold th (resp. tl) for the detection approach was

fixed to have less than 20% of Xc (resp. Xw) trials detected
as class wrong (resp. correct) on the learning set. Results are
presented in Tables II and III in terms of rate of response of the
detector (that will be used as an estimation of Presp when the
detection approach is used), and percentage of well classified
as wrong (resp. correct) (that will be used as estimation of the
conditional probabilities of the detector PÊ|E(ê = e) in the
next section).

For the two approaches the error rates averaged over the
two classes were not very different (20% for the classification
approach and 26% for the detection approach). However, the
classification approach allows better estimation of the class
correct whereas the presence or absence of an error potential
are equally estimated by the detection method. In Section III-C
we will discuss which approach provides the best performance
at the output of the full adaptive system.
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Table II: Results of the detection approach of error potentials.
Rate of response and percentage of well classified (used as
estimations of Presp and PÊ|E).

Subjects 1 2 3 4 5 6 Av.
%responses 63.3 50.8 85.0 81.7 61.7 56.7 66.5
class correct 74 63 78 77 78 70 73
class wrong 74 76 80 80 72 67 75

Table III: Results of the classification approach of error
potentials. Percentage of well classified (used as estimation
of PÊ|E). In this case Presp = 100%.

Subjects 1 2 3 4 5 6 Av.
class correct 92 91 93 87 83 80 88
class wrong 73 43 60 60 37 63 56

Table IV: Global error rate of the corrected system (to be
compared to the error rate of the SVM1 alone, Table I) and
probability of repetition. Initial error rate is on average 0.26
and final error rate (PEr) is 0.14.

Sub. Approach PEr Prepeat Intial BpT Final BpT

1 Detection 19.8% 25.0% 0.14 0.21
Classification 10.0% 26.2% 0.39

2 Detection 19.6% 16.9% 0.20 0.24
Classification 16.5% 17.2% 0.29

3 Detection 15.6% 34.4% 0.10 0.25
Classification 16.8% 23.4% 0.26

4 Detection 15.5% 32.8% 0.12 0.25
Classification 16.5% 27.1% 0.26

5 Detection 15.4% 20.3% 0.24 0.30
Classification 17.6% 21.4% 0.26

6 Detection 17.4% 21.6% 0.24 0.26
Classification 11.5% 29.5% 0.34

Av. Detection 17% 25% 0.17 0.25
Classification 14% 20% 0.30

C. BCI error rate improvement

Using the previous results, we compute the probability of
error of the corrected system, the probability of repetition and
the bit transfer rate. These are summarized in Table IV.

On average over all subjects, using the classification ap-
proach of detection of errors, the global error rate is 14%
(17% for the detection approach) and the repetition rate is
20% (25% for the detection approach). These results must
be compared to the 26% of error rate in the case of SVM1

alone. The initial average bit transfer rate is 0.17 and is
improved by 76% with the classification approach. These
results demonstrate that even with a rather low detection
rate of error potentials, their inclusion in the BCI system
substantially improves the performance. They also indicate that
the classification approach for error potentials is preferable
over the detection approach, due to a better estimation of the
class correct.

IV. DISCUSSION AND CONCLUSION

In this study, we have quantified the improvement of a
BCI system performance by including the detection of error
potentials. According to a final decision strategy (repetition
of the imaginary movement if the response of the detector is
wrong), the theoretical performance of the global system was
calculated in terms of probability of error, repetition rate and

bit transfer rate, from experimental performance of the SVM1

and of the error detector. The theoretical derivation can be
used during the phase of designing of a BCI, without testing
each time online the global system on experimental data, but
testing only (online or offline) the part corresponding to the
classification of a particular set of imaginary tasks.

The task classification algorithm is based on our previous
work [1][2] and the classification results are in agreement
with these previous studies. For detecting error potentials, two
approaches were compared on experimental data. The results
(Table IV) showed that the classification approach provides
lower probability of error and probability of repetition. With
this approach, on average 88% of correct (resp. 56% of
wrong) responses of the SVM1 are classified as correct (resp.
wrong)). On average, with a repetition rate of 20%, the error
rate is 14%, to be compared to 26% in the case of the SVM1

alone. The more relevant performance index that takes into
account the error rate and the repetition rate is the bit transfer
rate, which was improved by 76% with the inclusion of error
potentials.

These results show that including a detection of errors,
although far from ideal, increases significantly the accuracy
of the BCI system. The repetition of the imaginary movement
on average once every 5 commands seems to be reasonable
for clinical applications. Note that if the detection process was
perfect, the probability of repetition would be equal to the
probability of error of the SVM1 (here 26%). Finally, the
study also shows for the first time an experimental paradigm
of error potentials extracted after the classification of MRCPs
associated to the same imaginary task performed at two speeds.
Despite this classification problem is more challenging that the
classification of different tasks, the performance achieved with
the inclusion of error potentials are promising for the use of
this paradigm in online and clinical settings.
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