
  

  

Abstract— Machine learning methods for interfacing 
humans with machines is an emerging area. Here we propose a 
novel algorithm for interfacing humans with powered lower 
limb prostheses for restoring control of naturalistic gait 
following amputation. Unlike most previous neural machine 
interfaces, our approach fuses control information from the 
user with sensor information from the prosthesis to 
approximate the closed loop behavior of the unimpaired 
sensorimotor system. We present a Bayesian framework to 
control an artificial knee by probabilistically mixing of process 
state estimates from different Kalman filters, each addressing 
separate regimes of locomotion such as level ground walking, 
walking up a ramp, and walking down a ramp. We show its 
utility as a mode classifier that is tolerant to temporary sensor 
faults which are frequently experienced in practical 
applications. 

I. INTRODUCTION 

THE quality of life after leg amputation is highly 

dependent on how well users can ambulate with artificial 
limbs.  Artificial legs have traditionally been passive, but 
recent advances in battery technologies and low-weight 
actuators have made it practical to actuate the joints. State-
based control using information measured from onboard 
electro-mechanical sensors is currently used to control these 
powered prostheses [1, 2].  Electromyographic (EMG) 
signals measured from the user’s residual limb may also add 
important information to improve the control of the devices 
[2, 3].  Locomotion is a cyclical task that depends on the 
coordinated movement of the legs and the upper body. 
During such a dynamical task, the challenge is in 
synergistically actuating the powered prosthetic device with 
user’s unimpaired body by inferring the user intention. The 
gait cycle is commonly divided into discrete gait phases and 
a finite state controller switches the phases based on sensor 
feedback. The finite state controller needs to incorporate not 
only various gait phases but also various regimes of 
locomotion such as level-ground walking (level-walk), 
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walking up a ramp (up-ramp), walking down a ramp (down-
ramp), stair-ascent, stair-descent, etc. Huang et. al. showed 
that EMG generated by residual limb muscles has significant 
information related to user’s neural intent [3]; however, the 
intent estimation was not continuous and was only estimated 
at four discrete points in the gait cycle  Information 
extracted from EMG signals combined with information 
from onboard electro-mechanical sensors may improve the 
user’s ability to continuously control the powered prosthesis.  

In this preliminary study, we represent the prosthetic knee 
as a dynamical system in a state space that operates in three 
regimes of locomotion: up-ramp, down-ramp, and level-
walk. We present a sensor-fault tolerant Bayesian inference 
system that probabilistically combines mode-specific 
adaptive Kalman filters based on EMG from the muscles in 
the residual limb and signals from physical sensors 
embedded in the prosthesis. We demonstrate that the 
inference system can accurately perform mode classification 
at the sample rate of the sensors.  

II. METHODS 
Locomotion was divided into three regimes which are 

frequently encountered: level-walk, up-ramp, and down-
ramp; the gait cycle in each regime was further divided into 
two phases: stance phase when the prosthetic foot is on 
ground and swing phase when the prosthetic foot is in air. 
The three regimes and two gait phases constituted six modes 
of operation for the prosthetic knee. The prosthetic knee was 
described by a mode-specific discrete-time linear model, 

kkk wAxx +=+1                (1) 

kkk vxCy += mode
              (2) 

Where 
mode,CA  are transition matrices of compatible 

dimensions, 
n

kx ℜ∈ is the state vector, 
m

ky ℜ∈ is the 

measurement vector, 
n

kw ℜ∈ and 
m

kv ℜ∈ are the process 
and measurement noise vectors, respectively.  

A probabilistic Mixture of Trajectory Model (MTM) [4] 
was created as shown below:   
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where 
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kkx
is a mode specific adaptive Kalman filter 
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(see Appendix A), 
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is the corresponding 
likelihood, and p(mode) is the subjective prior information.   
An ‘argument of maximum’ test was then performed for 

selecting the intended mode kd  at each sample time k  
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The state vector ( kx ) for the prosthetic knee system 

consisted of knee angle ( kθ ), knee angular velocity ( kθ� ), 

knee angular acceleration ( kθ�� ), thigh vertical orientation in 

sagittal plane ( kϕ ), and thigh rate of change in vertical 

orientation ( kϕ� ): [ ]Tkkkkkkx ϕϕθθθ ����= i.e. 

5=n . The measurement vector ky  consisted of digitally 
filtered and standardized signals consisting of whitened 
EMG from thigh muscles: Gluteus Maximus, 
Semitendinosus, Sartorius, Tensor Fasciae Latae, Adductor 
Magnus, Gracilis, Vastus Medialis, Rectus Femoris, Vastus 
Lateralis, Biceps Femoris; 6-DOF load-cell signals at the 

ankle, 6-DOF inertial measurement unit on the thigh, and 

goniometer at the knee i.e., 23=m .   
We assumed that the initial state vector and noise vector 

are independently and identically distributed (i.i.d.) Gaussian 

random variables with initial state, ),(~ 000 PxNx , 

process noise ),0(~ QNwk , measurement noise 
),0(~ kk RNv where covariance matrices 0P , 

eQmod
, 

e
kR mod

are symmetric positive definite matrices. 

Furthermore, we assumed that 0x , kw  and kv  are mutually 

uncorrelated 
The model was discretized at time steps (T ) of 0.001sec. 

The state transition matrix A was found from the equations 
of motion assuming a constant acceleration, 
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            (4) 
The maximum likelihood estimates of 

eee RQC mod
0

modmod  and ,, were found with Expectation 
Maximization (EM). The initial conditions were assumed to 

be [ ]Tx 00000 π=  and 550 1.0 xP Ι×= where 

55×Ι is 55×  identity matrix.  Figure 1 displays a block 
diagram of the Bayesian inference system used in this work. 

The reliability of steady-state classification (or mode 
execution) was found from the percent of correct mode 

selections ( kd ) made after foot-off prior to foot-strike in the 
new mode to the last foot-off while performing level-walk, 
up-ramp, and down-ramp walking. The foot off prior to the 
first foot strike in a new regime was defined as the instant of 
regime transition and was identified manually from video 
frames.  

A. Experimental protocol and data collection 
The experimental data was collected from a unilateral 

(right leg) above-knee female amputee who provided written 
informed consent to participate in this study. The 
experimental protocol consisted of three locomotion regimes 
including walking on level ground, down-ramp walking 
(slope=5 degrees) and up-ramp walking (slope=5 degrees) in 
a laboratory setting. The subject started each trial standing 
still for approximately 3 seconds to initialize the inertial 
measurement unit and then walked 2-3 strides on level 
ground, transitioned to the specified locomotion regime (e.g. 
down-ramp or up-ramp walking), transitioned back to level 
ground walking for 2-3 strides and ended the trial by 
standing still. We collected 15 trials of each regime for 
training data and 10-fold cross-validation. 

B. EMG sensor fault rejection 
The surface EMG electrodes in the prosthetic socket 

picked electromagnetic noise during temporary liftoff from 
the skin which was simulated by embedding a 60Hz, 2-volt 
peak-to-peak sinusoid over one time-period in all the EMG 
channels. 

 
 Fig. 1. Schematic of the Bayesian inference system showing six modes 
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To reject such temporary faults, an adaptive Kalman filter 
was developed (see Appendix A). The innovation sequence 

i.e. 
mode

1|
modemode

−−= kkkk xCyz
for an optimal Kalman 

filter should be Gaussian white noise [5]. The 

autocorrelation function (
mode

1
k

Nk +−Ψ ) would go out of its 
confidence interval if the Kalman filter is sub-optimal [6] so 
we buffered the innovation sequence in a sliding window of 

length 200=N  data points to estimate
mode

1
k

Nk +−Ψ at each 

time step k . We found from the training data that the 

deviation in
mode

1
k

Nk +−Ψ from its confidence interval was 
much greater during simulated sensor fault than due to mode 
changes. Therefore a threshold for detecting these occasional 
EMG sensors fault was selected empirically in order to adapt 

the covariance of the measurement noise 
mode

kR  during 
temporary faults with that estimated from the buffered data 
[6].  

III. RESULTS 

A. Argmax() classifier performance 
The mode classifier was evaluated during steady-state 

modes as well as during mode transition. Figure 2 shows a 
representative plot of  the variation in normalized log-
likelihood of the down-ramp Kalman filter (solid line), the 

level-walk Kalman filter (dotted line), and the up-ramp 
Kalman filter (dashed line).  The gait cycle was divided into 
stance (green line) and swing (red line) phases of the 
prosthetic side as shown in Figure 2. The patient transitioned 
from level walking to down-ramp at approximately 4.5 
seconds, and transitioned back to level ground walking at 
approximately 13 seconds. The temporal error during regime 
transition (mode transition) is presented as the time 
difference between the actual regime transition identified by 
the experimenter using the recorded video (actual mode) and 
that inferred by the classifier (classified mode). The percent 
misclassification errors during steady state regimes as well 
as temporal error during regime transitions are tabulated in 
Table 1. 

B. Simulated sensor fault rejection 
The knee angular acceleration estimated with a level-walk 

Kalman filter with adaptation (dashed line) and without 
adaptation (dotted line) during simulated sensor fault is 
shown in Figure 3. The absolute error with respect to the no 
fault condition (solid line) was 8.89±6.26 deg/sec2 with 
adaptation and 20.48±11.88 deg/sec2 without adaptation. 

TABLE I.  MODE CLASSIFICATION. DIAGONAL TERMS ARE FOR 
STEADY STATE ERRORS WHILE OFF DIAGONAL TERMS ARE FOR MODE 

TRANSITION TEMPORAL ERROR 

Modes  
From 

to level 
 walk 

to up  
ramp 

to down  
ramp 

level walk 2.78 % -0.65±0.58 sec -1.18±0.26 sec 

up ramp 0.83±0.41 sec  1.84%  

down ramp 1.23±0.27 sec  1.25% 

IV. DISCUSSION 
The Bayesian inference system estimated the state 

trajectory as well as classified the mode at each time step 
which transitioned from one regime to another. The regime 
transitions had temporal errors of approximately 1sec (Table 
I).  We assigned the transition event to be the time of toe-off 
of the prosthesis before entering the next regime.  It is 
possible that the actual transition occurs either before or 
after this time or that the transition time is regime dependent. 
Varol et al [7] presented a multi-class classifier based on 

 
Fig. 2. Normalized loglikelihood from mode-specific Kalman filters 
during down-ramp walking and corresponding temporal classification 
error (green: stance phase of prosthetic side, red: swing phase of 
prosthetic side, solid line: down-ramp Kalman filter, dotted line: level-
walk Kalman filter, dashed-line: up-ramp Kalman filter). 

 
Fig. 3. Estimation of knee angular acceleration in sagittal plane by 
level-walk Kalman filter with and without adaptation. The absolute 
error from no fault condition (solid line) was 8.89±6.26 deg/sec2 with 
adaptation (dashed line)  and 20.48±11.88 deg/sec2 without adaptation 
(dotted line). 
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physical sensor data which had temporal errors of 
approximately 500ms for transitions between sitting, 
standing, and walking. The temporal error may be reduced 
by improving the mode-specific Kalman filter model [8] 
thus improving the discrimination ability of the 
loglikelihood during transitions using argmax() test. For 
example, we assumed constant acceleration to derive the 
state transition matrix which may not be appropriate during 
the transitions. However the time of the actual regime 
transition still remains unclear.  

Our steady-state mode classification rate was over 97% 
(misclassification error < 3%) across the modes (Table I). 
Huang et al. [3] presented an overall classification error of 
approximately 8.5% in two unilateral transfemoral amputees 
for pre-toe-off phase of gait during different regimes of 
locomotion: standing, contra-turn, ipsi-turn, stair ascent, 
stair descent, obstacle, level walking. Pre-defined transition 
rules implemented via p(mode) in equation 3 will remove 
unlikely modes during argmax() classification and may 
further improve the classification accuracy. Our presented 
framework provides classification at each time step unlike 
Huang et al [3] and can be easily extended to more modes 
addressing other regimes of locomotion like stair-ascent, 
stair-descent, etc. Moreover, the Kalman filter temporarily 
adapted the measurement covariance in order to reduce the 
effect of simulated EMG sensor fault on state estimates. 
However, a permanent failure of a sensor will need a long-
term adaptation strategy such as online identification of 
measurement covariance [6]. 

V. CONCLUSION 
We showed a principled way for combining signals from 

multiple sources into state estimates of a dynamical system. 
We have presented a framework for temporary sensor-fault 
tolerant Bayesian inference system which estimated the 
mode of operation at each time step. It can be used for 
contextual switching of mode-specific static parameters of a 
controller.  

APPENDIX 
Mode-specific adaptive Kalman filter algorithm:  
1. Initialization 

mode
0
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1|0

mode
0
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1|0 :  ,:  ,0: PPxxk === −−  

The initialization values mode
0x and mode

0P found from 
training data for each mode. 

2. Correction step 
modemodemode
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| kkkkkk zKxx += −  
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modemode
−−= kkkk xCyz is innovation 
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The threshold for detecting sensor fault was found 
empirically. 

4. One-step prediction 
modemode

|
mode

|1
mode

|
mode

|1   , QAAPPAxx T
kkkkkkkk +== ++

      5. Update 1: += kk  and go to 2. 
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