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Abstract— This paper proposes a novel matched subspace
detector (MSD) based algorithm for extracting discriminant
features from multi-sensor measurements of extracellular ac-
tion potentials (APs) to facilitate their subsequent separation
according to the neuron of origin. The method does not require
the construction of AP templates, and is therefore suitable
for unsupervised AP sorting applications. In addition, detailed
simulations show that the proposed algorithm outperforms
existing single-sensor based feature extraction approaches.

I. INTRODUCTION

Sorting of extracellular action potentials (APs) refers to the

process of detecting and classifying neural activity from ex-

tracellular recordings which are contaminated by background

noise with unknown properties. It typically represents the

first step in the analysis of extracellularly recorded multi-unit

activity. In practice, manual sorting of APs in large volumes

of experimental data may be prohibitively time-consuming,

and so automated procedures for AP sorting have become

essential. An automated AP sorting algorithm can roughly

be divided into three steps: (1) AP detection, (2) feature

extraction, and (3) AP clustering. In the feature extraction

step, information is extracted that is useful for discriminating

between the different AP clusters. This step is crucial since

it removes redundant information in the input data so that

clustering algorithms can work efficiently. A key question is

what features are most beneficial for clustering. The three

most common feature categories discussed in the literature

are: (1) AP shape-related features [1], [2], such as AP height,

width, peak-to-peak amplitude, inter-AP interval, and first-

order derivative, (2) principal components [1], [3], [4] and

(3) wavelet coefficients [5].

One common characteristic of the above mentioned fea-

tures is that they only capture “temporal” information since

they are obtained by processing single-sensor measurements.

However, AP sorting based only on temporal features is

challenging because neurons with similar geometries and

about equal distances to the electrode can generate very

similar AP waveforms and therefore similar features. To

overcome the problem, multi-sensor probes (e.g. tetrodes)

for extracellular recordings of neuronal activity have been

suggested [4], [6], [7], [8]. The simplest way to use data from
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multi-sensor probes is to apply standard feature extraction

techniques to all of the channels individually, and then

combine all the extracted features as inputs for clustering.

Other approaches like using neuron location estimates [8] or

independent components [6] as feature vectors for clustering

have also been reported. To locate a neuron with multi-

sensor measurements, a “forward model” for describing how

the AP propagates through the conductive neural media is

necessary. Monopole models are the simplest and the most

referred to [8], [9], but these models only provide a very

simplified view of the energy propagation. Using an over-

simplified model for localization based on such assumptions

can lead to location estimates with high variance and in

turn to poor clustering outcomes. Independent component

analysis (ICA) is a computational method for separating a

multivariate signal into additive subcomponents. However,

a strong assumption in ICA is that the subcomponents are

statistically independent [10], [6], which cannot be assumed

in practice.

In this paper, we propose a feature extractor for revealing

discriminant information from the data recorded by multi-

sensor probes. Our technique is based on the concept of the

matched subspace detector (MSD) [11], [12], which allows

both spatial and spatio-temporal features to be extracted.

Unlike algorithms based on estimating the neuron location,

the spatial information is extracted without using a forward

propagation model. Furthermore, there is no need to use

AP templates, and therefore our method is suitable for

unsupervised AP sorting.

II. STANDARD DATA MODEL AND ASSUMPTIONS

Assume that the APs in an AP sequence can be detected

by existing approaches (e.g. [13]) and that AP bundles can be

constructed based on the detection information. Here, an AP

bundle is a multi-channel, time-aligned data stack extracted

from measurements of all the channels that contains data

corresponding to a single AP. The procedure for feature

extraction based on MSD for a given AP bundle is depicted in

Figure 1.a. Notice that MSD provides two kinds of features:

(1) a spatial signature â which describes the spatial structure

of the potential fields at the sensor locations and (2) a

spatio-temporal feature vector ĉ which is the coefficient

vector of some orthonormal transform (e.g., the discrete

wavelet or cosine transform, DWT or DCT) of the weighted

combination of the data in all channels of the AP bundle.

Feature reduction and clustering are then performed to obtain

AP clusters based on â or ĉ as shown in Figure 1.b. Finally, a

suitably chosen criterion is evaluated to determine which type

of clusters (spatial or spatio-temporal) will provide optimal

discrimination.

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 3704

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



Fig. 1. Procedure for feature extraction and AP clustering based on MSD.
In (a), the 4 traces of signals represent a simulated AP bundle acquired by
a tetrode.

A. Standard Data Model

Following the mathematical model of array signal process-

ing, an AP bundle is modeled as

X = S + W = av
T + W, (1)

where S ∈ R
m×n are the noise-free multi-sensor measure-

ments of the AP generated by the target neuron with m
being the number of sensors and n being the number of

time samples in the bundle. The m × 1 vector a is the

spatial signature of the target neuron, the n × 1 vector v is

the AP of the target neuron, and W ∈ R
m×n is composed

of background neural and sensor noise. The model in (1)

assumes that each sensor receives a scaled version of the

same AP waveform v, so that S is a rank-one matrix. This

is only an approximation due to the distributed nature of the

AP source, but is a reasonably accurate representation of the

data. By vectorizing the data matrix, we have

x = s + w = v ⊗ a + w

= Φc ⊗ a + w = (Φ ⊗ a)c + w, (2)

where x, s and w are mn × 1 vectors and ⊗ denotes the

Kronecker product. The term v = Φc models the AP in the

absence of any specific information about the waveform, with

matrix Φ ∈ R
n×p representing a chosen orthonormal basis

and c ∈ R
p×1 representing the corresponding coefficient

vector. Modeling the AP signal in this way not only provides

the possibility of a compact representation for the AP but also

eliminates the need for AP templates, which enables unsu-

pervised spike sorting. Although Φ can be any orthonormal

basis, one with a compact support such as the wavelet basis

[5] is preferred in general since APs are transient pulses.

B. Assumptions

The following assumptions are adopted in this paper: (A1)

APs in an AP sequence can be detected using existing

methods (e.g. [13]) and the corresponding AP bundles can

be constructed. (A2) Each AP bundle contains an action

potential from only one target neuron, i.e., there are no

overlapping APs. (A3) AP bundles from two different neu-

rons have distinct spatial signatures which are unique to the

neuron locations.

III. MATCHED SUBSPACE DETECTOR (MSD)

BASED FEATURE EXTRACTION

A. MSD Using Single-Sensor Measurements

The matched filter is a special case of MSD obtained when

m = 1. For single-sensor measurements, using the matched

filter for feature extraction leads to maximizing the following

objective function [14]:

ĉ = arg max
c

‖sT
x
′‖2 s.t. ‖c‖ = ‖x′‖, (3)

where x
′ is the whitened or interference-suppressed measure-

ments which can be obtained for example using a filter based

on an autoregressive moving average (ARMA) model [15].

In this special case with m = 1, the vector a in (2) reduces

to a scalar gain factor that is absorbed in c. The solution

to (3) is obtained by choosing ĉ = Φ
T
x
′, which is simply

an orthonormal transformation of the interference-suppressed

measurements. If the Haar wavelet basis is used for Φ, ĉ will

be exactly the same as the feature vector obtained in [5].

B. MSD Using Multi-Sensor Measurements

MSD is a natural extension of matched filtering when

dealing with multi-sensor measurements (m > 1). MSD

solves the following maximization problem [11], [12]:

â, ĉ = arg max
a,c

‖sT
PHx‖2

s.t. ‖a‖ = 1 , ‖c‖ = ‖PHx‖ = α,
(4)

where the mn × mn matrix PH is a projection matrix

used for suppressing the spatially and temporally correlated

background neural noise, and where the norms of a and

c are constrained to avoid a trivial solution. The scaling

for c is chosen to be data dependent, in order to preserve

information about the AP amplitude. This is consistent with

the solution to (3) in [5]. To construct PH , multi-sensor

measurements of the background noise are necessary, which

can be accomplished by recording signals when the neuron

of interest is inactive. One could then set PH = PT ⊗ PS ,

where PT ∈ R
n×n and PS ∈ R

m×m are projection matrices

that are approximately orthogonal to the temporal and spatial

subspaces, respectively, in which the interference is observed

to lie [16].

Using this approach, the cost function in (4) can be

rewritten as

‖sT
PHx‖2 = c

T
Y(a)YT (a)c s.t. ‖c‖ = α, (5)

with Y(a) = (ΦT
PT ⊗ a

T
PS)x ∈ R

p×1. It is easy to

show that maximizing (5) can be achieved by choosing c =
α(Y(a)/‖Y(a)‖), and the spatial signature â can be found

through

â = arg max
a

‖Y(a)‖2 = arg max
a

‖aT
PSXPT Φ‖2

= arg max
a

‖aT
PSXPT ‖

2 s.t. ‖a‖ = 1.
(6)

The solution of (6) is thus obtained by letting â be the left

singular vector of PSXPT with the largest singular value.

Finally, the estimate of the coefficient vector c is obtained

by

ĉ = αĉ
′/‖ĉ′‖, (7)
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with ĉ
′ = Y(â) = Φ

T
PT X

T
PS â. Notice that PT X

T
PS â

is a weighted combination of interference-suppressed data

within an AP bundle, and ĉ
′ is, for example, the DWT of

PT X
T
PS â, if the DWT basis is used.

IV. FEATURE REDUCTION AND CLUSTERING

In many applications, the feature extraction process pro-

vides too much data to be efficiently handled by the subse-

quent clustering algorithm, and a further reduction in feature

dimensionality is required even though the MSD feature

extractor has discarded most of the redundant information in

the measurements. Moreover, the MSD provides two kinds of

features for further clustering, but it remains to be determined

which feature vector (â or ĉ) is best for clustering. In this

section, we address these two issues.
Assuming that there are Nd detected spike bundles whose

features have been extracted using MSD, we have, by

stacking the feature vectors, A ∈ R
m×Nd = [â1 . . . âNd

]
and C ∈ R

p×Nd = [ĉ1 . . . ĉNd
], which are referred to as

the spatial and spatio-temporal feature matrices, respectively.

The mean vector mA ∈ R
m×1 of A is defined as mA =

1

Nd

∑Nd

j=1
âj . Similarly, for C, we have the mean vector

mC ∈ R
p×1 which can be calculated in the same fashion

as mA. The variance vector VarA ∈ R
m×1 of A is defined

as VarA = diag{ 1

Nd

∑Nd

j=1
(âj − mA)(âj − mA)T } and

diag{} is used to extract the matrix diagonal. The number

of spatio-temporal features can be reduced by choosing the

features that correspond to the largest Nf components of

mC , similar to the approach used in [5]. This means that the

most “energetic” features are selected for clustering. For the

spatial features, we choose those corresponding to the largest

Nf components of VarA since features are more spread in

these coordinates. AP clustering is then performed based on

these reduced feature sets.
For a set of classes Ω = {ω1, ω2, · · · , ωC} clustered

based on feature vectors fi ∈ R
Nf×1 (i = 1, · · · , Nd), with

class ωj containing nj feature vectors from the jth class

and
∑C

j=1
nj = Nd, a scatter separability criterion can be

calculated through [17]

J = tr(S−1

M SB), (8)

where SM = 1

Nd

∑Nd

i=1
(fi − m)(fi − m)T and SB =

∑C

j=1
pj(mj−m)(mj−m)T are mixture and between-class

scatter matrices with mj = 1

nj

∑
fi∈ωj

fi, m = 1

Nd

∑Nd

i=1
fi

and pj =
nj

Nd
. The J quantity in (8) is a well-known measure

of the separability among classes and is widely used as a

criterion for feature selection. Based on the reduced dimen-

sion A or C, there will be two different scatter separability

criteria obtained, and thus we simply choose the clusters that

have larger J values as the final clusters. Note that clustering

using spatial and spatio-temporal features separately may not

be optimal in general; we have chosen this method due to

its simplicity, but better performance may be obtained with

a combined approach.

V. SIMULATION

A. Simulation Setup

A simulation setup similar to that used in [5] was adopted

in this paper. Two identical cell models were placed in

parallel to mimic the parallel organization of the cells in

cortical columns. In a local coordinate system, the somata

of these cells were centered at [0, 0, 0] µm and [50, 0, 0]

µm, respectively. To account for complex nonlinearities in

the kinetics of voltage-gated channels, the simulations were

carried out with a variable step size in NEURON [18], [5],

ranging between 0.02 ms and 1.0 ms and the data sampling

rate was set to 20 kHz. Two sampling directions mimicking

the process of recording from a sulcus and regular cortical

layers with several individual sampling tracks along each of

these two directions were simulated as in [5]. Tracks in the

vertical and horizontal directions (hereafter called V and H

tracks, respectively) started in a plane located at z = 100 and

y = 80 with ranges of electrode movement z ∈ [100,−100]
and y ∈ [80,−120], respectively. The tetrode geometry

specifications were adopted from a commercial supplier [19],

and the distance between sensors was between 20 and 40 µm.

Moreover, only white noise was added to the source signals

to generate the noisy measurements. In general, neural noise

may be spatially correlated and nonstationary. The variance

σ2 of the white noise was specified by a given signal-to-noise

ratio (SNR), defined as (‖S1‖
2

F + ‖S2‖
2

F )/(2‖W‖2

F ) with

Si representing the noise-free multi-sensor measurements of

the AP generated by the ith neuron. To obtain statistically

significant results, 100 trials were conducted for each neuron

at each position along the sampling tracks.

B. Results and Discussion

To evaluate the performance of the proposed feature

extractor, the K-means clustering algorithm was used and

features obtained by the Haar wavelet transform of the

tetrode tip measurements (for mimicking one-channel data)

were used for comparison. The number of features Nf used

in the simulation was set to 2. Figure 2 shows scatter plots

of the AP data taken at V-track-5 position 7 (tip position
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Fig. 2. Top left: a close-up of the two somata (blue) showing 13 vertical
sampling tracks. Axon hillocks/initial segments and dendrites are in magenta
and green, respectively. The tetrode axis lies along the V-track-5 in this
simulation. Scatter plots of spike data taken at V-track-5 position 7 (tip
position at [16.25, -40.16, -50.00]) using Harr (top right) and MSD features
(bottom left and right). “S” denotes spatial, “ST” denotes spatio-temporal.
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at [16.25, -40.16, -50.00]) based on spatial, spatio-temporal

and Haar features with SNR = 0 dB. As shown in these

figures, the MSD features are more discriminative than the

Haar features, and achieve a classification error less than

0.5%. Figures 3 and 4 show plots of the classification

errors at all sampling positions for the V-tracks and H-tracks

respectively. The SNR was 0 dB in these cases as well. As

shown in these two figures, MSD outperforms the existing

one-channel Haar wavelet transform approach regardless of

which track is considered. This is not surprising since the

MSD method uses space and time features for clustering

compared to only time features used in the one-channel

Haar wavelet transform approach. For V-tracks at z larger

than 50 µm, the classification errors of the MSD features

become large since in this region, the tetrode is far away

from the somata and hillocks, and the received signals are

mainly due to the surrounding dendrites. Similar trends are

observed in the case single-sensor measurements. However,

the simulations demonstrate the advantage of using multi-
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Fig. 3. Classification errors for V-tracks. Different symbols mean different
tracks. The red line represents the central track that lies exactly in between
the two neurons (i.e. track 13 shown in Figure 2).
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Fig. 4. Classification errors for H-tracks. Different symbols mean different
tracks. The red line represents the central track that lies exactly in between
the two neurons.

electrode measurements in this application.

VI. CONCLUSIONS AND FUTURE WORK

This paper provides a new approach for using multi-

sensor measurements in AP sorting applications, based on

a natural extension of the work in [5]. The algorithm does

not require an approximate forward propagation model and

is suitable for unsupervised implementation. Our simulations

demonstrate that the proposed spatial or spatial-temporal

MSD feature extractor yields features that are more dis-

criminatory, thereby facilitating better clustering results than

the existing single-electrode approach. The proposed MSD

approach could also be used for neuron localization. Upon

clustering, the mean spatial signature of a target neuron can

be calculated and its null space can be used to perform

localization with standard algorithms, such as MUSIC [20]

or other approaches.
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