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Abstract— Data in biomedicine are characterised by their
complexity, volatility and heterogeneity. It is these character-
istics, rather than size of the data, that make managing these
data an issue for their analysis. Any significant data analysis
task requires gathering data from many places, organising
the relationships between the data’s entities and overcoming
the issues of recognising the nature of each entity such that
this organisation can take place. It is the inter-relationship of
these data and the semantic confusion inherent in the data
that make the data complex. On top of this we have volatility
in the domain’s data, knowledge and experimental techniques
that make the processing of data from the domain a distinct
challenge, even before those data are organised. In this article
we describe these challenges with respect to a project that is
using data mining techniques to analyse data from the kidney
and urinary pathway (KUP) domain. We are using Semantic
Web technologies to manage the complexity and change in our
data and we report on our experiences in this project.

I. INTRODUCTION

In this paper we describe our approach and experiences
in processing the complex data associated with the kidney
and urinary pathway (KUP) [1], [7]. This domain’s data
are typical of those found in biomedicine and the types of
analysis needed are similar to those in other sub-domains
of biology and medicine. We have used Semantic Web
technologies to manage the complexity of these data. We
have developed the KUP knowledgebase (KUPKB) [5] as a
resource description framework (RDF) [6] store that uses a
KUP ontology (KUPO) as a flexible schema to capture the
breadth of the domain’s knowledge and to use it as a basis
for data mining experiments.

Several aspects of working to understand an organism’s
biology have come together to make the processing of
biology’s data a science in its own right. Biology is itself
highly complex; an organism is made of many entities that
form complex relationships with each other to create the
biological system in question. In the data we have about
biological systems, each of these entity’s relationships with
other entities are regulated in complex patterns, with many
states being contingent on other events. Representing and
managing this complexity when processing biological data
is hard [2], [3].

On top of this aspect, we also have the practice of the
discipline itself that adds further complexity. Whilst some
large projects produce large amounts of data, much data
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are still produced from an individual laboratory’s high-
throughput experiments. The experiments and the entities
they produce can be described in highly heterogeneous
ways that make organising and comparing data difficult.
Common identifiers for the same entity are rare across the
numerous databases in biology. The move towards ontologies
for common vocabularies and minimal information standards
helps [4], [9], but compliance is not great, except in some
of the larger public resources [4].

Added to this we have change; molecular biology as a
science changes rapidly. What was a ‘fact’ can change on
an almost daily basis. Added to this are the rapid changes
in experimental technique and variations upon experimental
themes. In biology we now have experimental techniques that
will let biologists explore the genome, the expression of the
genes it contains, the proteins within a cell, the metabolism
of a cell, and so on—all at a system rather than individual
entity level [5]. All these experimental techniques produce
new knowledge about a domain, but knowledge that has
to be interpreted in the context of the factors used in the
experiment and the broader biological context in which the
experiment was performed. All these factors need to be taken
into account in managing a domain’s knowledge to make it
suitable for data mining.

Over the past decade and a half, biology has worked
hard to create a range of ontologies to overcome barriers
of semantic heterogeneity. Most notable of these is the Gene
Ontology (GO) [10] that gives a common vocabulary for
describing the major functional attributes of gene products.
GO is now used by over 40 data resources and has over
24 000 concepts. The Open biomedical Ontologies (OBO) is
an umbrella organisation for GO and many other ontologies
that cover biological phenomena from genotype to pheno-
type [8], and to investigations and clinical trials. Data are
now being described with these ontologies, so biology is in
principle now rich with coherently semantically described
data that can be inter-linked to enable complex descriptions
of biological phenomena. Now these data are described, we
should be able to exploit those consistently semantically
described data to explore those data more deeply than ever
before.

II. THE KUP KNOWLEDGEBASE

In respect to its data and its questions, the KUP domain is a
microcosm of the field of biology. KUP biologists wish to un-
derstand the kidney and urinary pathway, both its biology and
the diseases in which the KUP goes wrong. To do so, KUP
biologists study the genes, proteins, metabolism and all their
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regulations in the highly compartmentalised organ that is the
kidney and related urinary tract. Data on the KUP domain
resides in many public databases and in many individual data
files about experiments, typically spreadsheets available as
supplementary information for published articles. All these
data need to be integrated to give appropriate contextual
knowledge about each entity for data mining to take place.

We have developed the KUP ontology (KUPO) in the
Web Ontology Language (OWL) to organise these data and
populated it with genes, proteins, metabolites, and experi-
ments, covering the transcription and protein complements
of cells and urine across the KUP domain [5]. The KUPO
uses ontologies for the anatomy of the kidney, cells, gene
product functionality, disease, metabolism and investigations
to cover the KUP domain. We have used proteins described
using GO and added some 163 proteomic and transcriptomic
experiments (at the time of writing) to the KUPKB, using
the KUPO as a schema for describing these resources. The
KUPKB forms an resource description framework (RDF)
graph of all these data, integrated by the common naming
scheme provided by the KUPO. In RDF terms, the KUPKB
is not large (only some 20 million triples), but is complex,
relating many kidney related entities together in complex
ways.

RDF, such as the KUPKB, naturally forms a graph
data structure that can be a target for analysis by graph-
based learning algorithms. However, many data mining pre-
processing and analysis algorithms expect a feature-vector
based representation. By generating feature-vector based
representation from RDF data we can explore a wider range
of machine learning techniques over our data. The simple
approach is to generate a data-table where a node in the
graph becomes the identifier for a row entry, and the edges
represent the attributes. Complications arise when a node in
the RDF graph has multiple related objects along a given
edge. This is a common case in RDF graphs; for example,
a single gene annotated with multiple molecular functions
from the GO. There are multiple approaches to deal with
set-valued features, that involve some preprocessing in order
to make the data suitable for data mining. In the KUPKB
we can use a SPARQL query to generate a table of all the
genes along with their GO annotations (See Figure 1). When
a term has multiple related values along a single predicate
we split these into individual attributes and create a true-
false table for a gene against its given GO annotation. From
this generated table we can begin to explore a wider range
of data mining algorithms, such as building an association
matrix. We have now started using the KUPKB to pull out
data into such tables suitable for data mining experiments.

III. EXPERIENCES IN BUILDING AND USING THE
KUPKB

Our creation of the KUPKB has in essence worked for
our needs. It has, however, not entirely been ‘plain sailing’.
Some observations we have made on our experiences are:

• Availability of ontologies that cover the KUP domain
was good, but when working with combinations of OBO

and OWL, there are different mappings depending on
the converter use. For example, we found three different
URIs for the OBO relationship ‘part of’ depending
on how and where the OBO to OWL translation was
made. This type of deviation can make it harder to
integrate across resources. For this reason, we have had
to normalise existing representations to conform to the
way we have chosen to model. The latest release of the
OBO’s OBO to OWL converter is expected to address
this problem by providing a reference mapping between
the two languages.

• The KUP ontology covers many biological sub domains
relating to KUP and re-uses vocabulary from existing
ontologies wherever possible. There are many benefits
to building an ontology using such a modular approach;
however, current ontology editing environments, such
as Protégé, do not provide an adequate level of support
for managing the collaborative construction and main-
tenance of such an ontology.
Problems also exist when it comes to publishing such an
ontology. The KUPO specific axioms make little sense
when viewed without considering the imports closure
of KUPO and classification by an OWL reasoner. Con-
versely, when viewing KUPO with the imports closure
and post reasoning the KUPO specific region forms
only a small fraction of imported ontologies, and is
thus not immediately obvious to the viewer. We have
been exploring techniques in ontology modularisation
to try and extract the specific KUPO portion of the
ontology from the imports closure, but to date, whilst
the extracted modules are often complete from a logical
point of view, the output is still not desirable from a
visualisation point of view.

• The KUPKB makes extensive use of external RDF
datasets. To date no scalable approaches exist to support
federated queries across multiple SPARQL endpoints.
For now the KUPKB acts as a data warehouse where
external linked datasets are manually imported into the
KUPKB. This approach provides good scalability for
our queries, but raises issues of concurrency with the
imported data.

• The adoption of linked data for many life science
databases is slow. There is still no authority on
which URIs should be used for entities from many of
the databases. This means that some published RDF
datasets are not properly linked, even though they de-
scribe the same entities. For databases that have no RDF
content, we are forced to generate RDF representations
of the data that are not authoritative and likely to be
incompatible for integration in the future.

• Much of the relevant proteomic and genomic data
for KUP is only found in supplementary material of
published research paper. This data comes in a variety
of formats and is often difficult to extract, for exam-
ple from PDFs, before we can convert into our RDF
representation.

• We have to make many compromises with respect to the
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Fig. 1. The KUPKB RDF graph provides a flexible data model for querying. The queries generate data tables that feed into data mining workflows for
further analysis

way we model the biological data. Our ideal solution
would be to use all of OWL’s features and expressivity
to capture the data and use automated reasoning to
make inferences and query the data. With the current
size of the KUPKB ( 30,000 classes, and millions of
individuals) we, however, face scalability problems. As
a result we have used simpler modelling to ease the
writing of SPARQL queries. We still use automated
reasoners to pre-compute inferences over subsets of the
data for computing class hierarchies, but much of the
inferential power in querying is lost inside the RDF
triple store.

IV. DISCUSSION

The main issue with data mining biology’s data is gath-
ering and organising the data to be mined. This is not to
diminish the complexities of the data mining itself, but the
nature of bioinformatics data is hard. It is not necessarily a
massively technical problem; there are many possible solu-
tions, but the main issues are sociological. As a community,
development of widely accepted standards that are responsive
to change are needed. We know (by and large) how to do this
from a technical point of view, but the community needs to
change to adopt and co-operate to produce data in a certain
way. As computer scientists, we need to make it easier to
follow a (de facto) standard, rather than ‘making up’ one’s
own data standard.

We have made the KUPKB following various ‘de facto’
standards in bioinformatics, as well as having made some
of our own deviviations—usually due to the incompleteness
or changing nature of current efforts; as these develop the
KUPKB will move to meet them. The KUPKB is, however,
in a state that it is useful for both our human and computer
users. Data will continue to be added to the KUPKB,

especially more experiments and more types of experimenmt;
this should involve extensions to the ontology that forms the
KUPKB’s schema.

We have already started using the KUPKB to gather
data for data mining analyses. At present these are straight-
forward frequency counts and correlations. Even these sim-
ple analyses do, however, show us some interesting re-
sults (see, for example, the myExperiment pack at http:
//www.myexperiment.org/packs/184.html). Our
main area of development, however, lies not in the KUPKB,
but in exploiting this background data within the current table
based data mining operations. As already mentioned, data
mining operators tend to use ** aranged in tables. this can be
done, but it is rather lumsy. We would like to be able to have
data mining tools that exploited these graph based forms of
background knowledge in their native form. At the simplest
level, the graph of background knowledge can be exploited to
abstract over the entities being mined. The other relationships
in the graph can also provide much of an entity’s context—
processes in common, participating entities; stages and life-
cycle parts in which these events happen; common forms of
regulation. All these background concepts and relationships
are in the KUPKB, but as yet are under-exploited in our data
mining, but not by our human users. Future efforts wil be
directed in this area.

The bioinformatics community is moving in the right
direction. Metadata standards are being developed. Uptake
is, however, patchy. The KUPKB is a start of an example of
the kind of data organisation that can be made by exploiting
Semantic Web languages and the semantically compliant data
that are now available. There remains, however, much to do.
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