
  

  

Abstract—The wealth of data amassed by the utilization of 
various high-throughput techniques, in various layers of 
molecular dissection, stresses the critical role of the unification 
of the computational methodologies applied in biological data 
handling, storage, analysis and visualization. In this article, a 
generic workflow is showcased in a multi-omic dataset that is 
used to study Obstructive Nephropathy (ON) in children, 
integrating microarray data from several biological layers 
(transcriptomic, post-transcriptomic, proteomic). The 
workflow exploits raw measurements and through several 
analytical stages (preprocessing, statistical and functional), 
which entail various parsing steps, reaches the visualization 
stage of the heterogeneous, broader, molecular interacting 
network derived. This network, where the interconnected 
entities are exploiting the knowledge stored in public 
repositories, represents a systems level interpretation of the 
pathological state probed.  

I. INTRODUCTION 
ECENT advances in biological high-throughput 
techniques allow the simultaneous collection of data, 

derived from multiple sources of biological description. The 
microarray technology, widely used for probing gene 
expression, is now accommodating other levels of molecular 
dissection. Thus, nowadays microarrays are used to measure 
events at the post-transcriptional level of gene regulation 
(e.g. miRNA expression [1]), at the post-translational level 
by measuring active protein levels (antibody arrays [2]) or 
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other like epigenomic (transcription factor binding [3]) and 
genetic events (SNP arrays [4]). In any case, the researcher 
is required to handle large amounts of data and complex 
output molecular lists, characterizing variegated 
experimental configurations [1]. 

Nowadays, the data management and analysis pipelines 
for data stemming from several layers of microarray analysis 
are gradually converging to standardized processing 
avenues, enabling the reproducible derivation of reliable 
biological outcomes, always under the premise of certain 
considerations [5]. However, rapid technological advances 
regarding Next Generation Sequencing, have a dramatic 
impact leading to the explosion of the throughput rates, 
concerning tasks such as de novo genome sequencing, re-
sequencing, study of chromatin methylations and genome 
wide protein-DNA interactions [6]. The statistical 
challenges, regarding the analysis and meaningful 
interpretation of these entities, mark out the idiosyncratic 
nature and the limitations towards the goal of a systems level 
interpretation. This ultimately implies a failure of the 
interpretation regarding the understanding of the underlying 
molecular mechanisms concerning the interrogated system. 

A big part of the bioinformatics routine represent tedious, 
yet extremely time-consuming, data-integration tasks from 
multiple sources, both experimental (e.g. different levels of 
transcription and translation events) as well as information 
stored in public biological databases and repositories. The 
former concerns quantitative information derived from 
different molecular biology experimental technologies, like 
gene expression (GEO), protein-protein interactions 
(IntAct), miRNA expression and detection (miRbase) for 
instance. The latter represents semantic information 
regarding different, levels of functional annotation in 
varying description depth, complying to the structure of 
ontological vocabularies (e.g. Gene Ontology) and model 
pathway maps (e.g. KEGG). Recently, there are approaches 
published, succeeding in integrating data through the use of 
relational database models, which bridge together a variety 
of public repositories (e.g. BRM [7]), by utilizing putative 
transcriptional networks [8], and graph visualization tools, in 
order to visualize the interaction landscape among different 
layers (genes, functions, diseases) [9]. 

However, the idiosyncrasies of multi-omic data 
integration stress the pluripotent nature of the interpretation 
tasks, leading to software development of numerous 
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scattered, functionally disconnected amid each other, tools. 
Some exploit a complex database model or through the use 
of graph visualization libraries, visualize different layers of 
biological information (e.g. Cytoscape). Apart from the lack 
of a generalized integration approach, these solutions fail to 
incorporate the data analysis part, leaning to the expediency 
of other developed analytical tools [9], underrating the 
impact of the data-entry phase due to format inconsistencies. 
They also presume that the user is acquainted with high-
throughput biological data analysis. Even those which 
integrate analysis modules together with biological database 
functionalities miss an analytical workflow that would 
enable labour-free comprehensive visualizations [10]. 

In this study, a generalized, framework for multi –omic 
analysis is presented, generic enough to handle various high-
throughput data modalities (microarray data,  next 
generation sequencing data). The resulting workflow 
encompasses versatile steps, like pre-processing, 
normalization, statistical, functional and pathway analysis 
for each type of data. It fuses the analytical tasks in a 
unified, comprehensive visualization of the multiple layers 
of information, through intense, intermediate parsing, 
enabling automated, flexible visual instantiation. In the use 
case, we integrate for demonstration purposes 3 –omics 
datasets that were used to study different severity grades of 
Obstructive Nephropathy (ON). ON is considered the most 
common children nephropathy, and the primary reason for 
kidney transplantations in children. It initiates as a renal 
pathological state caused by impaired flow of urine or 
tubular fluid [11], obstructing in the end-stage the proper 
urine flow. ON is of great importance to clinicians and 
common in infants due to congenital abnormalities of the 
urinary tract [12]. 

II. MATERIALS AND METHODS 

A. Data 
The three –omics datasets analyzed setting the multi-omic 

dataset regarding the study of ON comprise i) human 
proteomics data ii) human miRNA data and iii) mice mRNA 
data. The human proteomic dataset included twenty children 
aged between two weeks and six months divided into four 
equal sized groups. Based on a set of clinical parameters, the 
samples were partitioned in three physiological subsets of 
five subjects each, namely: 1) Control including children 
without any renal damage, 2) No_Op comprising children 
with mild obstruction who do not need to undergo surgery to 
repair the ureteropelvic junction, and 3) Op: children with 
severe obstruction, who needed surgery to repair and 
reconstruct the junction. For each pediatric subject an 
antibody array allowed the quantification of the expression 
of 725 proteins in the collected urine. Human miRNA 
dataset encompassed infants divided, similarly with the 
proteomics dataset, into a Control subset (8 subjects), a 
No_Op subset (8 subjects) and an Op subset (10 subjects). 
The Agilent Human miRNA Microarray platform was used 

to measure expression values for a total number of 790 
miRNAs. Three mice mRNA data groups were extracted 
after partial unilateral ureteral obstruction on neonatal mice 
in order to mimic the obstructive nephropathy syndrome as it 
occurs in children and examine the fingerprint of ON at the 
transcriptomic layer. These groups comprised non-operated 
Control mice (9), operated mice with Mild obstruction (5) 
and operated mice with Severe obstruction (5). Agilent's 
mice oligonucleotide microarrays were used to analyze the 
expression of 41000 mouse transcripts. Only the human 
homologues were considered. 

B. Ontological and Pathway Analysis 
For each dataset, over-represented GO terms and KEGG 

pathways were identified using the StRAnGER web 
application [13]. StRAnGER performs functional analysis of 
high-throughput genomic datasets, starting from a list of 
significant genes and using established statistical tests 
coupled with bootstrapping to derive a final population of 
statistically significant ontological terms. 

C. Data Integration (KUPKB) and visualization 
The integration of the multiple –omics entities was 

enabled through the use of the interactions stored in the 
Kidney and Urinary Pathway Knowledge Base (KUPKB). 
The KUPKB [14] uses Semantic Web technologies to 
integrate data and knowledge related to the Kidney and 
Urinary pathways, aiming to assist in biomarker discovery 
and molecular pathway modeling of diseases related to the 
urinary system. All the derived elements from the multiple –
omics dataset analysis were visualized in EGAN [9]. 

III. RESULTS 
Statistical selection on the proteomics level revealed 43 

Differentially Expressed (DE) proteins through the 
application of ANOVA among all subsets (p<0.1). From the 
DE proteins, over-representation of GO terms (GOTs) (11 in 
total) was observed targeting either general biological 
processes like protein binding, chromosome, DNA binding, 
nucleus or referring to more specific biological actions like 
regulation of cell cycle, spindle, which refers again to a 
specific phase of cell cycle, response to hyperoxia and 
proapoptotic caspase-mediated activities. At the gene 
expression level, the number of significant DE mouse 
transcripts obtained using a t-test (p<0.01, Benjamini-
Hochberg FDR<0.25 and fold change cutoff >|0.6| in log2 
scale) were found 318 and 697 for the contrasts Control vs 
Mild and and Control vs Severe, respectively. Merging the 
DE mouse transcripts and then applying enrichment analysis 
revealed 99 over-represented GOTs and 22 KEGG 
pathways. Some of the GOTs reported here included several 
interesting functions related to inflammation and response to 
inflammation such as chemokine activity, oxidoreductase 
activity, oxidation reduction, growth factor activity, lipid 
metabolic process, cell migration and fatty acid metabolic 
process. On the miRNA level, a t-test (p<0.01) yielded 66 
and 76 DE miRNAs for the contrasts Control vs No_Op and 
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Fig. 1. The analysis workflow used to process the mutli –omics ON dataset. Starting from raw microarray image analysis data, the latter undergo several rounds 

of preprocessing, statistical and functional analysis, up to the point of visualization of a putative network derived by the analytical steps and data present in 
public repositories. 

Control vs Op, respectively, while the enrichment analysis 
revealed 18 and 16 over-represented GOTs for the same 
contrasts using genes where the miRNA sequence is found 
within, and 111 and 101 GOTs using miRNA target genes 
based on interactions stored in the KUPKB. 

As a next step, the visualization of the ON specific DE 
entities from the multi-omic analysis was endeavored in one 
generalized graph, which comprises putative as well as 
experimentally inferred relationships among molecular 
enities. For this scope, EGAN [9] was used, a Java 
application for gene-based graph visualization of high-
throughput assay results, providing also a flexible interface 
to import several layers of customized interactions (node-
node and associations). This interface creates visualizations 
with two possible ways i) direct node-node interactions and 
ii) node associations with super-nodes (e.g. pathways). Thus, 
the basic nodes, in this generalized graph, consist of genes 
derived from the gene expression analysis whereas the rest 
of the entities (miRNAs, proteins, GOTs, KEGG pathways) 
are depicted as super-nodes associated with multiple other 
entities. In this sense, the interconnections and possible 
interactions among the results of the different –omic layers 
(transcriptomic, proteomic, post-transcriptomic) are 
visualized in two levels: i) interactions among genes at the 
level of their expressed proteins using protein-protein 
interactions and ii) associations of genes (also proteins and 
miRNAs) with the respective biochemical pathways and GO 
functions they participate. miRNAs interact with the 
aforementioned entities in two ways: a) miRNAs that target 
genes derived from the transcriptomic data analysis and b) 
genes that encode for miRNAs derived from the post-
transcriptomic (miRNA) data analysis. 

For the visualization, the automated processing 
capabilities of Gene ARMADA [1] and StRAnGER [13] 
applications were exploited. The analysis results are then 
parsed by a parser exploiting several Perl scripts to 
accommodate several file types, providing additional options 
such as statistical filtering and keyword search. The parsing 
layer interfaces with the visualization software, in order to 
properly import the statistical and functional analysis results, 
taking into account additional options like the 
aforementioned keyword search. For example, the user is 
empowered to visualize only the GO terms “apoptosis” and 
“immune response” among a set of statistically significant 
GOTs derived by the functional analysis layer. Finally, a 
Perl script wraps all intermediate results and automatically 
creates a .jnlp file that is used to launch EGAN, with the 
customized visualization options. An overview of the 
workflow approach is presented in Fig. 1. All the 
interactions presented rely on the  multi–omic data analysis, 
stored in the KUPKB for the following types of interactions: 
i) protein-protein interactions using UniProt IDs and 
mappings to HUGO gene symbols for mus musculus 
homologue genes in homo sapiens ii) predicted miRNA 
targeting genes for homo sapiens iii) genes coding for 
miRNAs in homo sapiens and iv) proteins associated to 
genes that express for those in homo sapiens. An instance of 
the network thus built is displayed in Fig. 2, depicting the 
GOTs “apoptosis” and “immune response”, the KEGG 
pathway “cytokine-cytokine receptor interaction”, the genes 
under these entities as well as the top twenty scoring 
miRNAs. From this figure, the researcher may for example 
observe that the majority of genes connected to “immune 
response” are intensely up-regulated, which is inline with the 
involvement of the immune system, depicted by earlier 
hypothesis or later findings, in the mechanisms beneath 
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nephropathy diseases [15-16].  
 

IV. DISCUSSION 
Despite the wealth of tools regarding various aspects of 

microarray analysis, unifying all the analytical steps easily 
and effectively remains a big challenge. In the past few years 
substantial effort has been deposited to the creation of 
analysis pipelines [17]. Regarding results visualization,  
even when the software infrastructure empowers it through 
the incorporation of several biological interaction databases 
[10], and the adoption of versatile visualization libraries (e.g. 
Cytoscape), the automation of the whole pipeline, from raw 
experimental data to network visualization, is missing. The 
innovation of the present work relies on the unification of all 
steps of multi-omic microarray datasets through several 
analytical layers within a single workflow in an automated 
fashion: the analysis starts from a common framework for 
the pre-processing and statistical analysis of raw data. 
Derived results are fed to a common functional analysis 
module and then to a dedicated parser, that can 
accommodate several file types including multi-omic entities 
(genes, miRNAs, proteins) and semantic entities of 
functional content (GOTs, KEGG pathways). The final 
result of the workflow is the reconstruction of a putative 
network based on current knowledge for interconnections of 
the aforementioned entities, with the use of software based 
on widely used graph visualization libraries [9]. The 
visualized network consisting of the most significant 
molecular entities and their interactions could help a 
biologist study in depth the mechanisms beneath a disease 
given that the appropriate experimental data is available.    

We demonstrated our workflow based on data 
characterizing several experimental conditions regarding the 
severity of ON. The datasets used were derived from three 
different –omics layers, namely transcriptomic (gene 
expression), post-transcriptomic (miRNA expression) and 
proteomic (antibody microarrays to measure protein levels). 
The interactions among the DE entities were derived from a 

knowledge base built specifically to study the molecular 
mechanisms underlying the ON, the KUPKB. Future work 
includes among others the complete automation of the 
pipeline and the construction of a web interface which will 
provide users the opportunity to incorporate and process 
other datasets in a user-friendly manner. 

REFERENCES 
[1]    A. Chatziioannou, P. Moulos, and F. N. Kolisis, “Gene ARMADA: an     
        integrated multi-analysis platform for microarray data implemented in    
        MATLAB,” BMC Bioinformatics, vol. 10, pp. 354, 2009. 
[2] R. Huang, W. Jiang, J. Yang et al., “A biotin label-based antibody 

array for high-content profiling of protein expression,” Cancer 
Genomics Proteomics, vol. 7, no. 3, pp. 129-41, May-Jun, 2010. 

[3] S. Pillai, and S. P. Chellappan, “ChIP on chip assays: genome-wide 
analysis of transcription factor binding and histone modifications,” 
Methods Mol Biol, vol. 523, pp. 341-66, 2009. 

[4] D. Nowak, S. Ogawa, M. Muschen et al., “SNP array analysis of 
tyrosine kinase inhibitor-resistant chronic myeloid leukemia identifies 
heterogeneous secondary genomic alterations,” Blood, vol. 115, no. 5, 
pp. 1049-53, Feb 4, 2010. 

[5] S. Rosenfeld, “Do DNA microarrays tell the story of gene 
expression?,” Gene Regul Syst Bio, vol. 4, pp. 61-73, 2010. 

[6] W. J. Ansorge, “Next-generation DNA sequencing techniques,” N 
Biotechnol, vol. 25, no. 4, pp. 195-203, Apr, 2009. 

[7] A. R. Shah, M. Singhal, K. R. Klicker et al., “Enabling high-
throughput data management for systems biology: the Bioinformatics 
Resource Manager,” Bioinformatics, vol. 23, no. 7, pp. 906-9, Apr 1, 
2007. 

[8] M. Bansal, V. Belcastro, A. Ambesi-Impiombato et al., “How to infer 
gene networks from expression profiles,” Mol Syst Biol, vol. 3, pp. 78, 
2007. 

[9] J. Paquette, and T. Tokuyasu, “EGAN: exploratory gene association 
networks,” Bioinformatics, vol. 26, no. 2, pp. 285-6, Jan 15, 2010. 

[10] S. Kozhenkov, Y. Dubinina, M. Sedova et al., “BiologicalNetworks 
2.0--an integrative view of genome biology data,” BMC 
Bioinformatics, vol. 11, pp. 610, 2010. 

[11] S. Klahr, “The geriatric patient with obstructive uropathy,” Geriatr 
Nephrol Urol, vol. 9, no. 2, pp. 101-7, 1999. 

[12] J. L. Bascands, and J. P. Schanstra, “Obstructive nephropathy: insights 
from genetically engineered animals,” Kidney Int, vol. 68, no. 3, pp. 
925-37, Sep, 2005. 

[13] A. A. Chatziioannou, and P. Moulos, “Exploiting Statistical 
Methodologies and Controlled Vocabularies for Prioritized Functional 
Analysis of Genomic Experiments: the StRAnGER Web Application,” 
Front Neurosci, vol. 5, pp. 8, 2011. 

[14] S. Jupp, J. Klein, J. Schanstra et al., “Developing a Kidney and 
Urinary Pathway Knowledge Base,” in Bio-ontologies SIG, Boston, 
USA, 2010. 

 [15] D. Oliveira , “Membranous nephropathy: an IgG4-mediated disease”  
The Lancet, Vol. 351, 9103, pp. 670-671, 1998 

[16] K. Hirayama et al., “Predominance of type-2 immune response in 
idiopathic membranous nephropathy: Cytoplasmic cytokine analysis”. 
Nephron,  91(2), pp. 255-61, 2002 

[17] D. Montaner, J. Tarraga, J. Huerta-Cepas et al., “Next station in 
microarray data analysis: GEPAS,” Nucleic Acids Res, vol. 34, no. 
Web Server issue, pp. W486-91, Jul 1, 2006. 

 
 

Fig. 2. A snapshot of the visualized network derived from the 
application of the workflow presented in Fig. 1. 
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