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Abstract— The goal of this work is to investigate EEG
(ElectroEncephaloGram) dynamics after drug intake in patients
being in states of Disorders Of Consciousness (DOC) after brain
injury. Four patients were involved in the study. All the patients
exhibit cerebral lesions located in the same anatomical region.
Two nonlinear indexes, such as Lempel-Ziv Complexity (LZC)
and Approximate Entropy (ApEn), along with power spectra,
were calculated for EEG signals gathered from electrodes
placed on both injured and non-injured regions. Experimental
results show that after drug administration the two nonlinear
indexes calculated from EEG taken from injured regions
increase (p < 0.001) while power spectra decrease or remain
unchanged. These results do not pretend to draw conclusions
about consciousness level either suggest promising therapeutical
treatments, but represent only an experimental evidence about
the change in the EEG complexity after drug administration.

I. INTRODUCTION

Recent clinical improvements in intensive care have in-
creased the number of acute brain injured survivors. Al-
though some of these patients go on to make a good recovery,
many of them do not and remain in one of several states now
collectively known as Disorders Of Consciousness (DOC).
These include the Vegetative State (VS), the Minimally
Conscious State (MCS), Severe Disorder of Consciousness
(SDC) [1], [2]. The difference between these clinical con-
ditions is the level of awareness that patients show (see
Fig. 1). VS is characterized by the complete absence of
behavioral evidence for self or environmental awareness,
although patients can show spontaneous or stimulus-induced
autonomic activity. In this condition, sleep-wake cycles could
also be showed [1]. MCS is a condition in which patients
show one or more signs of knowledge about self or the
environment [2], e.g. they follow simple commands, they
recognize verbal or gestural yes/no-responses (accurate or
not) or show movements that seem to be beyond mere
reflexes. Typically, MCS occurs as a progression from VS,
but may also be observed during the course of progressive
decline in neurodegenerative diseases. Concerning SDC, it
can be globally defined as ”severe cognitive disorders” in
which the level of cognitive functioning was lost. In spite of
recent intensive care advances, the diagnosis and the clinical
treatment in DOC patients are still crucial issues.
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Fig. 1. Conceptual scheme for global disorders of consciousness. Ab-
breviations: VS, Vegetative State; MCS, Minimally Conscious State, SDC,
Severe Disorder of Consciousness and DOC, Disorders Of Consciousness.
Green represents the ability to produce voluntary behavior (mobility).

II. CLINICAL DIAGNOSIS AND TREATMENT

The diagnosis of DOC is not easy to make. It has been
estimated that at least 40% of vegetative state patients are
misdiagnosed [3]. Latest imaging progresses provide a good
tool to improve the assessment of disorders of consciousness:
although functional neuroimaging can not replace the clinical
assessment, it can describe how much the cerebral activity
and its regional distribution are different when compared
with healthy controls, during rest or after stimuli [4]. Nev-
ertheless, it has been shown that imaging studies are not
very reliable: in recent years, despite the great diffusion and
success of fMRI, several pitfalls were found [5]. In addition,
imaging techniques are too expensive for clinical routine
application. Therefore, current clinical practice adopts behav-
ioral criteria, such as neurobehavioral rating scales (Aspen
Neurobehavioral Conference Workgroup [1], Royal College
of Physicians of London [6]) to detect signs of consciousness
[7] in DOC, and Levels of Cognitive Functioning (LCF)
Scale [8] to follow the recovery of conscious and com-
munication after trauma in patients with severe cognitive
disease. Specifically, Rancho Level of Cognitive Functioning
Scale (LCFS) is one of the earliest developed scales used to
assess cognitive functioning in post-coma patients [9]. It was
developed for planning the treatment, tracking the recovery,
and classifying outcome levels. This scale is subdivided into
eight levels in which patients can be classified (ranging
from ”No response” to ”Purposeful-appropriate”). Besides
the evaluation of cognitive level, another scale, the Glasgow
Outcome Scale (GOS), is used to evaluate motor disability
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level as well as outcome prediction. This scale attempts
to generalize and categorize the outcomes of patients by
defining 5 levels (L), from dead (L:1) to Good Recovery
(L:5) through the Severely Disabled (L:3). Concerning the
clinical treatment, pharmacological intervention is used in
DOC clinical practice. Excitatory drugs were proposed in
order to overcome the lack of neurotransmitters which leads
to a state of unconsciousness and/or unawareness [10].
Against studies that utilize excitatory drugs, in the last few
years new pharmacological interventions utilize inhibitory
drugs which compete with the inhibitory neurotransmitters
since brain injury enhances the neural inhibitory response
[11]. Zolpidem is a nonbenzodiazepine sedative in the im-
idazopiridine class chemically distinct from other sedatives
which is used in a normal brain for sleep induction, too.
However, in a dormant brain after severe injury, Zolpidem
may do the reverse. It increases brain function within 30 min
after oral application. This rapid effect distinguishes it from
other medicines in DOC such as the dopaminergic medicines
that take several weeks to achieve a response [11]. Imaging
studies using 99mTc HMPAO Brain SPECT or 18F FDG
PET in patients after brain damage have shown that non-
functioning areas start functioning again after zolpidem[12].

III. EEG AND DISORDERS OF CONSCIOUSNESS

Recent evidences in literature have shown the power-
ful and reliability of quantitative Electroencephalography
(qEEG) in clinical assessment of DOC [13]. The most
common EEG pattern in DOC patients could include fo-
cal or diffuse continuous slowing of the dominant power
spectra in the theta (4 ÷ 7.5 Hz) and/or delta (0.5 ÷ 3.5
Hz) frequency ranges [14]. Loss functional connectivity by
coherence analysis is also included [15]. We moved from the
assumption that physiological systems have to be considered
complex systems as much as any other natural system. Since
EEG signals exhibit significant complex behavior [16], a
complete characterization could be performed only if its
nonlinear and dynamic properties are retained. Accordingly,
the usage of higher order statistics and chaotic measures
have been proposed [17]. Literature on nonlinear theory
reports that many relevant features can be extracted. This
work is focused on Entropy and Lempel-Ziv Complexity
(LZC). Entropy can be able to discriminate among complex
systems, including deterministic, stochastic and composite
systems. More in detail, an approximation of Entropy named
”Approximated Entropy” (ApEn) can be calculated. It is
a statistical parameter that measures the predictability of
current values of a physiological signal from its previous
values. Many works report on how ApEn measurement can
be useful to estimate sleep stages [18] and different brain
states. Lempel-Ziv Complexity (LZC) is a useful complexity
measure that indicates the rate of appearance of new patterns
in a time series. EEG nonlinear indexes might have effect in
predicting the prognosis of awakening of both VS and MCS
patients. Recently, several papers demonstrated how LZC and
ApEn can provide a quantitative measure of the severity of
cerebral cortex suppression in VS and MCS. In addition, they

are effective in quantifying the response to pain stimulation
[19], [20], [21] as well as in predicting outcomes from
VS patients. Accordingly, the objective of this work is to
comparatively explore drug-induced changes in complexity
and power of EEG signals. Based on current literature, two
nonlinear indexes, such as Lempel-Ziv Complexity (LZC)
and approximate entropy (ApEn), are calculated for signals
gathered from electrodes placed on injured and non-injured
regions.

IV. MATERIALS AND METHODS

A. Subjects and Clinical Assessment

The study was performed in the Brain Injury Unit, De-
partment of Neuroscience, Cisanello Hospital, Pisa, Italy.
We analyzed four unconscious patients who presented right
parietal-temporal lesion. More in detail, two males (being
45 and 69 years old) and two females (24 and 56 years
old), one in minimally conscious state (LCFS:3; GOS:3)
and three with severe cognitive disorders (LCFS: 5.3±0.5;
GOS:3.3±0.5), respectively. The patients were right handed
and they had no previous brain injury. The hospital ethical
committee approved the study. Informed written consent was
obtained from the guardians or relatives of the patients. Brain
magnetic resonance imaging (MRIs) scans were obtained
from all the patients to ensure the location of brain injuries
and exclude obvious communicating or obstructive hydro-
cephalus.

B. EEG recording

The patients were in non sleeping states during the entire
recording process and laid comfortably in a quiet ward. The
EEG was recorded using a BrainQuick amplifier System
(Micromed, Italy), at positions Fp1, Fp2, F3, F4, C3, C4,
P3, P4, O1, O2, F7, F8, T3, T4, T5 and T6, according
to the international 10-20 configuration system (electrode
impedance < 5 KOhm). A linked earlobe electrode was
used as reference. The electrooculogram (EOG) was recorded
from two additional electrodes in order to reject off-line the
EEG trials corrupted by blinking and eye movement artifacts.
To remove the blink artifacts, Independent Component Anal-
ysis (ICA) was used. Signals were digitized with sampling
rate of 256 Hz, bandwidth 0.1-100 Hz and 12-bit AD con-
version resolution. The baseline EEG dataset was recorded
before the drug assumption for at least 10 minutes (baseline).
After 30 minutes from the drug assumption, another 10
minutes of EEG acquisition was performed in order to study
the changes. Since ApEn and LZC were highly sensitive
to the presence of high-frequency components in the EEG
signal [22] on which, in addition, possible Electromiogram
(EMG) artifacts were overlapped,the highest values were
considered as outliers and discarded. Signal processing was
performed on consecutive intervals of 60 seconds. A sixth-
order Infinite Impulse Response (IIR) low-pass filter having
cut-off frequency of 30 Hz was used to remove noise over
gamma band. The well-known Matlab toolbox EEGLAB [23]
was used to process EEG data.
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C. Data Selection

Because the injury sites of the patients were quite different,
it was rather difficult to evaluate the degree of unconscious-
ness with full montage. Therefore, in order to compare drug-
induced changes in injured and undamaged region, two EEG
channels have been chosen for the analysis. According to
the MRI scans of all patients, we chose P4 and O1. The
former was used to compare drug-induced changes in injured
region and the latter for undamaged region. All features were
calculated off-line from pieces of consecutive 60 s intervals
for both conditions (pre and post drug assumption).

D. Nonlinear dynamics analysis

1) Lempel-Ziv Complexity (LZC): Before the LZC calcu-
lation, we transformed the EEG time series into a simple
binary sequence conversion (zeros and ones). By choos-
ing as threshold the mean value of each sequence, data
equal or below were converted into the symbol ‘0’, while
those above into the symbol ‘1’. According to the Kas-
par and Schuster method [24], the digitalized sequence is
scanned in order to compute the complexity index c(n).
More specifically, this index counts the number of differ-
ent patterns in a sequence, starting from short patterns to
the longer ones. For instance Lempel-Ziv complexity of
s = 101001010010111110 is 8, because different patterns
observed in s are 1|0|10|01|010|0101|11|110 [24], [25]. To
obtain a complexity measure that is independent of the se-
quence length, c(n) was normalised. For a binary conversion,
Lempel and Ziv [26] demonstrated that:

lim
n →∞ c(n) = b(n) ≡ n

log2 n
(1)

such that c(n) could be normalized via b(n):

LZC =
c(n)
b(n)

(2)

LZC usually ranges between 0 and 1. LZC can be viewed
as independent of number of samples when n is large [25].

2) Approximate entropy (ApEn): Approximate Entropy
(ApEn) measures the complexity or irregularity of the signal
[27], [28]. Large values of ApEn indicate high irregularity
and smaller values of ApEn more regular signal. The ApEn
was computed as follows. First, a set of length m vectors uj

is formed:

uj = (RRj , RRj+1, ..., RRj+m−1), (3)

where j = 1, 2, ..., N−m+1, m is the embedding dimension,
and N is the number of measured RR intervals. The distance
between these vectors is defined as the maximum absolute
difference between the corresponding elements, i.e.:

d(uj , uk) = max
n=0,...,m−1

{|RRj+n −RRk+n|} (4)

Next, for each uj the relative number of vectors uk for which
d(uj , uk) ≤ r is calculated, where r is the tolerance value.
The index is denoted with Cm

j (r) and can be written in the
form:

Cm
j (r) =

nbr of {uk|d(uj , uk) ≤ r}
N −m + 1

∀k (5)

Due to the normalization, the value of Cm
j (r) is always

smaller or equal to 1. Note that the value is, however, at least
1/(N −m+1) since uj is also included in the count. Then,
taking the natural logarithm of each Cm

j (r) and averaging
over j we obtain:

Φm(r) =
1

N −m + 1

N−m+1∑

j=1

ln Cm
j (r). (6)

Finally, the approximate entropy is obtained as:

ApEn(m, r,N) = Φm(r)− Φm+1(r) (7)

Thus, the value of the estimate ApEn depends on three
parameters, the length m of the vectors uj , the tolerance r,
and the data length N. In this work we chose m = 2. The
length N of the data also affects ApEn. As N increases ApEn
approaches its asymptotic value. The tolerance r has a strong
effect on ApEn and it should be selected as a fraction of the
standard deviation of the data (SDNN). A common selection
for r is r = 0.2SDNN , which is also used in this work.

E. Spectral Analysis

To compare the nonlinear features with traditional qEEG,
we also performed spectral analysis, through Fast Fourier
Transform, in the typical four bandwidths of the EEG signal,
namely δ (0.5÷3.9 Hz), θ (4.0÷7.9 Hz), α (8.0÷12.9 Hz)
and β (13.0÷ 30.0 Hz).

V. EXPERIMENTAL RESULTS

Analysis was performed by using Matlab (version 2007a).
Independent t-tests were used to analyze differences in
nonlinear indexes and spectral power between the baseline
and drug-intake conditions. Statistical significance was deter-
mined as p < 0.05. Results in terms of mean and standard
deviation are shown in the table I

TABLE I
LZC, APEN AND POWER SPECTRA COMPARISONS AMONG DIFFERENT

CONDITIONS.

EEG Ch. Index Baseline Post Zolpidem p
ApEn 0.4978±0.0699 0.6300±0.0173 <0.001*
LZC 0.2599±0.0307 0.3551±0.0229 <0.001*

P4 Power δ 29.5148±15.6413 12.1331±1.3168 <0.001*
Power Θ 16.7758±3.6086 9.3800±1.5112 <0.001*
Power α 10.5277±1.7292 6.9827±0.7849 <0.001*
Power β 11.0981±2.4013 11.0220±0.9918 >0.05

ApEn 0.6768±0.0247 0.6893±0.0205 <0.05*
LZC 0.4064±0.0326 0.4204±0.0260 >0.05

O1 Power δ 15.6482±3.0470 13.1694±1.6521 <0.001*
Power Θ 12.0781±1.6453 9.7269±1.0154 <0.001*
Power α 10.9717±1.9697 8.8817±1.1558 <0.001*
Power β 15.3339±2.7589 14.1809±1.2901 >0.05

3726



VI. DISCUSSION AND CONCLUSION

This work aimed at characterizing EEG dynamics after
drug assumption. Four patients were included in this study,
one of them with MCS and three with SDC. All the patients
presented right parietal-temporal lesion. After brain injury
the inhibitory response dominates [11]. If in a normal brain
function Zolpidem enhances excitatory action, in dormant
brain may do the reverse and may be able to increase brain
functions within 30 minutes after oral application. This rapid
effect distinguishes it from other medicines in DOC such as
the dopaminergic medicines. Two nonlinear indexes, such
as Lempel-Ziv Complexity (LZC) and Approximate Entropy
(ApEn), along with power spectra, were calculated for EEG
signals gathered from electrodes placed on injured and non-
injured regions. Experimental results showed different trends
of the two non-linear indexes with respect to power spectra
calculated from EEG acquired from injured and non-injured
regions, during baseline condition and after administrating
drug. More specifically, the two non-linear indexes calculated
from EEG from P4 channel in baseline condition are lower
than after drug administration condition (p<0.001). On the
contrary, power spectrum, after the treatment, decreases in
δ, θ, α bandwidths with p < 0.001 while in β band
remains unchanged. The same parameters calculated from
EEG acquired from O1 region do not undergo a statistically
significative change in trend, from baseline to drug-intake
condition. As reported in recent literature, techniques derived
from non-linear dynamics and chaos theory may be of
complementary value in identifying patterns and mechanisms
that are not detectable with traditional statistics based on
linear models. Our results showed changes in nonlinear index
trends, but they do not pretend to give any clinical evidence
about possible changes in levels of cognitive functions.
Rigorous clinical validations, in terms of metabolic inves-
tigation, are necessary to confirm any possible hypothesis.
There are some works in literature [19], [20], [21] showing
that complexity of EEG increases with the consciousness
level. Although these works could easily lead us to conclude
that Zolpidem assumption may improve the awareness of
patients, we keep away from this conclusion and only
show very early results from a preliminary experimental
protocol on a few patients. The prospectives go towards the
understanding of the underlying physiology of the nonlinear
indices as well as the research of other additional reliable
parameters.
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