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Abstract— We present a computational scheme to obtain
adaptive non-linear, multiple-input models of the Volterra-
Wiener class, by utilizing function expansions of the Volterra
kernels in a recursive least-squares formulation. Function
expansions have been proven successful in linear and nonlinear
systems identification as they result in a significant reduction
of the required free parameters, which is a major limiting
factor particularly for nonlinear systems, whereby this number
depends exponentially on the nonlinear system order. We
illustrate the performance of the proposed scheme by presenting
results for a simulated linear two-input system with time-
varying characteristics.

Index Terms: Nonlinear systems identification, Volterra mod-
els, Time-Varying Systems, Laguerre functions.

I. INTRODUCTION

The study of many physiological systems has been pur-
sued in the context of Volterra-Wiener models, as these
systems are characterized by considerable complexity and
often exhibit nonlinear behavior [1]. Typically, physiological
systems are affected by a number of physiological factors,
some of which may be non-observable; moreover, they are
also influenced by physiological mechanisms and rhythms
that exert their effects over widely varying time scales
(e.g., local mechanisms may act within seconds, whereas
diurnal or circadian rhythms have a cycle on the order
of several hours). Consequently, these systems may exhibit
nonstationary characteristics as well. Therefore, the ability
to quantify these nonstationarities accurately is important in
the context of physiological systems modeling, particularly in
real-time applications. Among many methods proposed for
nonlinear systems identification, expansion of the Volterra
kernels in terms of an orthonormal basis, such as the La-
guerre basis, has been proven successful as it reduces the
required number of free parameters considerably [2]. In the
present paper, we propose a recursive least-squares scheme
to estimate multiple-input Volterra models using Laguerre
function expansions. We also evaluate its performance by a
simulated example.

II. METHODS

A. Multiple-input Volterra models

The output of a non-linear multiple input single output
system can be expressed in terms of a series of functionals
[1] that represent higher order convolutions with the input
signals. In discrete time we have:
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where I is the number of inputs, xi are the system inputs
and y(n) is the system output. k

(xi1...xiq )
q denotes the q-th

order Volterra kernel of the system that corresponds to inputs
(xi1...xiq ). The Volterra kernels describe the linear (q = 1)
and nonlinear (q > 1) dynamic effects of the inputs (and their
interactions) on the output. Specifically, for q = 1 there exist
I linear kernels in 1 that correspond to each input, whereas
for q > 1 the terms k

(xi1...xiq )
q correspond to the nonlinear

self-kernels of each input for (xi1 = . . . = xiq ) and to the
nonlinear cross-kernels between different inputs if some of
(xi1 , . . . , xiq ) are different. The sum of eq. (1) can be viewed
as a generaliztion of the convolution sum, with the Volterra
kernels quantifying the effect of past input values (linear
kernels), as well as their q-th order products (nonlinear self-
and cross-kernels) on the output at present time n. For causal
and finite memory systems the sums in 1 are defined for
mi = 0 to M , where M is the system memory.

B. Orthonormal function expansions of Volterra kernels

Direct estimation of the model of 1 from input-output mea-
surements requires the estimation of a number of parameters
that depends exponentially on the nonlinear system order
Q, i.e. this number is analogous to MQ. This may result
in a very large number of free parameters if M and/or Q
are large. One way to reduce it is to express the Volterra
kernels in terms of an orthonormal discrete-time basis as
shown below for the first and second-order kernels:
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where i1, i2 = 1, ..., I and b
(xi)
j (m) is the j-th order

discrete-time basis function corresponding to input i.
One possible choice for the basis set, which has been

widely used, is the discrete-time Laguerre basis [2], as these
functions form a complete orthonormal basis in [0 ∞),
making them suitable for causal finite memory systems. In
this case the j-th order basis function is given by:
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This method requires the determination of two parameters
for each input: Lxi

and αi where Lxi
is the maximum

function order required for input i and αi (0 < αi < 1)
determines the rate of exponential decay of the corresponding
Laguerre functions. Larger values of αi result in slower
decay and are thus more suitable for system inputs that
exert their effects with large memory and/or slow dynamics.
Determination of these two parameters is discussed below.

By combining equations (1) and (2) we can write:

y = Vc+ ε, (4)

where y is the (N × 1) vector of output observations,
V is a (N × d) matrix containing the convolution of both
inputs with the Laguerre functions v(xi)

j = xi ∗ b(xi)
j (linear

models), as well as higher-order products between them
v
(xi1)
j1

v
(xi2)
j2

. . . v
(xiQ)
jQ

(nonlinear models), including self- and
cross-terms (whereby i1 = i2 = · · · = iQ and some of
i1, i2, . . . , iQ are different respectively), and c is the (d× 1)
vector of the unknown expansion coefficients. For a two-
input system, the number of free parameters d is equal
to L + 1 for Q = 1 and L1L2 + (L+ L(L+ 1)) /2 for
Q = 2,where L = L1 + L2, due to the symmetry of the
second-order self-kernels with respect to j1, j2, . . . , jQ.

The values of v(xi)
j can be obtained by the following

recursive relations [3]:
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The least-squares estimate of c is given by:

ĉLS = (VTV)−1VTy. (7)

C. Recursive estimation of the Laguerre expansion model

In order to obtain adaptive estimates of the Volterra kernels
we formulate eq. (7) using recursive least squares. Initially,
we rewrite the least-squares cost function at time point n as
[4]:

J(n) =

N∑
s=1

λn−se2(s) (8)

where e(s) are the residuals at time point s and λ is
the forgetting factor (0 < λ ≤ 1), which determines the
weight of the previous time points on the present estimates.
A smaller value of λ corresponds to models that adapt
more quickly, while larger values of λ yield results that are
closer to regular least-squares. The update equations for the
coefficient vectors at time point n are then written as:

ĉ(n) = ĉ(n− 1) +K(n)ε(n) (9)

ε(n) = y(n)− vT (n)ĉ(n− 1) (10)

P(n) =
1

λ

[
P(n− 1)− P(n− 1)v(n)vT (n)P(n− 1)

λ+ v(n)TP(n− 1)v(n)

]
(11)

K(n) =
P(n− 1)v(n)

λ+ vT (n)P(n− 1)v(n)
(12)

where v(n) are estimated from eqs. (5) - (6), K(n) is
a gain matrix that determines the update size for ĉ(n) and
P(n) is the estimate of the coefficient covariance matrix. The
initial value for this matrix is typically selected as P(0) =
ρI. The effect of the value of λ on the results is examined
below.

D. Model order selection

In order to select the model complexity (i.e., the value
of Lxi

for each input), we propose a heuristic scheme that
is based on the Bayesian information criterion (BIC). The
BIC determines the optimal model structure as the one that
minimizes:

BIC =

(
2 ∗ log

[∑N
1 (e(n))2

N − d− 1

])
+ (d ∗ log(N)) (13)

where e(n) are the residuals between the output measure-
ments and the model output prediction and d,N were defined
above as the number of model free parameters and number
of observations respectively. Since the recursive estimation
above (eqs. (9)-(12)) requires the use of a fixed structure
for V the values of αi and Lxi may be determined as
follows. First, the entire data sets is segmented using sliding
windows with a length that is adequate to capture the slower
system dynamics. For each of the sliding windows regular
least squares may be used to select the optimal value of
αi as the value that minimizes the normalized mean square
error of the model prediction for a range of Lxi values.
Consequently, for these optimal αi values, the values of Lxi

may be selected as those that minimize the BIC criterion. For
the recursive scheme, the median model orders that result
from this procedure as the most representative for the entire
data set are then selected.

E. Simulated system

In order to evaluate the method, we created a linear, two-
input simulated system of the same class, i.e. its output
is given by 4, with time-varying coefficients. Its structural
parameters were as follows: L1 = 7, L2 = 5, α1 =
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Fig. 1. Representative estimated coefficients (blue) versus true coefficients
(red) for λ = 0.993 for both inputs (left panel: input 1, right panel: input
2). Note that the estimated coefficients track the true coefficients well.

0.55, and α2 = 0.75. The true coefficients were assumed
to vary in a sinusoidal manner with different frequencies for
each input. The inputs were zero mean independent Gaussian
White Noise signals with a length of 10000 points, while
independent zero mean white noise ε was added to the output
for a signal-to-noise ratio (SNR) equal to 10 dB. The results
obtained for this system are presented in the next section.

III. RESULTS

The system structure in this case is known, therefore we
selected the same structure for our model in order to facilitate
comparisons. However, note that the model order selection
procedure outlined above yields values that are close to the
true ones and the results are not affected much. The results
for the estimated coefficients are shown in Figs. (1) - (2)
for two different values of λ, i.e. λ = 0.993andλ = 1. The
latter case corresponds to regular least squares, whereby all
the previous input values are taken into account in the cost
function with equal weights. We can see that for λ = 0.993
the estimated coefficients track the real coefficients well for
both inputs - we show four representative coefficients for
each input. Note that the true coefficients vary with different
frequencies for the two inputs. On the other hand, for λ = 1
the coefficients gradually converge to values that are close to
zero, i.e. to the mean value of the true coefficients. Therefore,
the results obtained are not correct.

This is illustrated by computing the normalized mean-
squared error (NSME) of the estimated time-varying kernels
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Fig. 2. Representative estimated coefficients (blue) versus true coefficients
(red) for λ = 1 for both inputs (left panel: input 1, right panel: input 2).
Note that the estimated coefficients converge to small values close to the
mean value of the true, time-varying coefficients

relative to the true time-varying kernels, defined as the square
of the ratio between the second norm of the difference vector
between them to the second norm of the true kernel vector.
In both cases, the time-varying kernels are given by eq.
(2) but they are updated every time step according to the
(true or estimated values) of the coefficient vector ĉ(n).
The estimated linear time-varying kernels are shown in Figs.
(3)-(4) for both both inputs for λ = 0.993 and λ = 1
respectively, where it can be seen that in the former case
the kernels are tracked with a frequency that corresponds
to the oscillation frequency of the true coefficients (Figs.
(1)-(2), whereas in the second case they gradually converge
to a ”mean kernel”. The corresponding NMSE values for
both values of λ are shown in Fig. (5). It is evident that
the recursive scheme with λ = 0.993 provides much better
estimates of the true time-varying kernels. Note that when the
number of observation increases the recursive scheme with
λ = 1 converges to the least-squares estimate that would
be obtained using all the input-output observations (hence in
this case the recursive scheme is equivalent to regular least-
squares as mentioned above).

IV. DISCUSSION
We have presented a recursive least-squares scheme for es-

timating nonlinear, multiple-input models, based on Laguerre
expansions of Volterra kernels and illustrated its performance
on a simulated system. One of the main issues in nonlinear
systems identification is the number of the required free

3730



Fig. 3. Estimated time-varying linear kernels (k(xi)
1 , i = 1, 2 in eq. (1))

for both inputs (left panel: input 1, right panel: input 2) as a function of
time for λ = 0.993.

parameters. In case of a Q-th order system with memory
M , the number of free parameters in the standard least-
squares formulation of the Volterra model is equal to MQ.
Utilizing function expansions reduces this number to LQ,
with the difference being more pronounced for nonlinear
systems, since typically L << M . Recursive least-squares
require a fixed model structure; in order to determine the
most representative structure we propose a scheme utilizing
the BIC to select the model structure.

Obtaining accurate estimates of nonstationarities in phys-
iological systems is particularly important, as these systems
exhibit a high degree of complexity and are affected by
many physiological factors that exert their effects over time
scales that may be widely different. Therefore, in real-time
applications it is important to track these nonstationarities in
a reliable manner. In this context, selection of the parameter
λ is important as it determines the adaptive properties of the
estimation algorithm. As the value of λ reduces, the effective
memory of the estimation algorithm reduces as well, and the
estimates are affected relatively more by the immediately
preceding input values. Therefore, smaller values of λ are
more suitable for systems that are rapidly varying and/or have
small memory, whereas larger values are suitable for slowly
varying systems and systems with large memory.We aim to
examine the selection of λ in a more systematic manner;
however an empirical rule is that it should correspond to
the memory of each system input. For instance for relatively
small values of λ, the effective memory of the estimation
is small (for example 0.9520 = 0.36), which implies that

Fig. 4. Estimated time-varying linear kernels (k(xi)
1 , i = 1, 2 in eq. (1))

for both inputs (top panel: input 1, bottom panel: input 2) as a function of
time for λ = 1.

0 2000 4000 6000 8000 10000
0

2

4

6

8

Iterations

N
M

S
E

 [%
]

1st input

 

 

0 2000 4000 6000 8000 10000
0

1

2

3

4

5

Iterations

N
M

S
E

 [%

2nd input

 

 

λ 0.993
λ 1

λ 0.993
λ 1

Fig. 5. Normalized mean squared error between true and estimated time-
varying kernels for both inputs (top panel: input 1, bottom panel: input 2) for
both values of λ considered. The estimates are much better for λ = 0.993

a small number of points affect the current estimates and
that such a value should be used only for systems with short
memory. The application of the proposed method to cebebral
hemodynamics is currently underway and will be reported in
subsequent studies.
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