
  

  

 
Abstract—Fast MRI makes it possible to visualize dynamic 

biological phenomena and can potentially reduce the cost of 
diagnostic imaging. Constrained imaging methods such as 
compressive sense (CS) and optimal lattice sampling (OLS) 
have proven to be effective for speeding up MRI. In doing so, 
CS takes advantage of the image sparsity or compressibility 
and OLS utilizes the known signal/spectrum support. 
Interestingly, while CS requires sampling to be “randomized” 
to obtain incoherent artifacts which is critical for 
reconstruction, OLS mandates sampling to be on a structured 
lattice. In this paper, we proposed a method to integrate CS 
with OLS so that both the sparsity and support constraints can 
be used simultaneously. The method randomizes the sampling 
on the lattice and minimizes a convex cost function with 
sparsity constraint and data fidelity terms. Computer 
simulations in 3D MRI show that the proposed method allows 
greater accelerations with minimal degradation of the image 
quality.    
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I. INTRODUCTION 

 
agnetic resonance imaging (MRI) is a relative slow 
imaging modality as compared with X-ray CT, 
ultrasound imaging, and optical imaging. A number of 

technologies have been proposed to improve the MR 
imaging speed. These include fast pulse sequences such as 
EPI or spirals, parallel imaging with multiple-channel 
receiver and array coils, and constrained imaging. 
Compressive sense (CS) and optimal lattice sampling (OLS) 
are two constrained imaging methods proven to be effective 
for fast MRI [1-7].  
 
The two methods are fundamentally different in their 
assumptions, data acquisition schemes, and reconstruction 
algorithms. CS takes advantage of the image sparsity or 
compressibility. It was first introduced in the literature of 
Information Theory and Approximation Theory. The basic 
idea is that a sparse signal can be reconstructed from its data 
samples (projected) even if they are sampled at a rate below 
the Nyquist criterion (undersampling). This is true if the 
following conditions hold: First, the signal must have a 
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sparse representation in a transformed domain (i.e., it must 
be compressible by some transform coding scheme). 
Second, the aliasing artifacts in a linear reconstruction 
caused by undersampling must be incoherent (noise-like) in 
the sparsifying transform domain. Under these conditions, 
the image can be reconstructed using a non-linear convex 
optimization method which enforces both sparsity 
representation of the signal and consistency of the 
reconstruction with the acquired samples. CS has been 
successfully implemented and applied in fast MRI in the 
recent few years [1-3,8-15].  
 
On the other hand, fast imaging with OLS is based on 
multiple-dimensional signal sampling theory to achieve most 
efficient “spectrum” packing [4-6]. In MRI, this means a 
less dense k-space sampling is often sufficient if the support 
of the image (“spectrum” of the k-space data) can be packed. 
Many previous methods are based on this fundamental 
principle. For example, finite spatial support methods such 
as mrMRI (multi-region MRI) and reduced FOV (field of 
view) imaging assume that the objects (or its dynamic 
content) are confined to some sub-regions of the whole FOV 
[16,17]. Finite temporal spectrum support assumption is 
used in DIME (Dynamic Imaging by Motion Estimation)  
[7]. Finite spatiotemporal spectrum distributions of the (k, 
t)-space signals have also been exploited in methods such as 
UNFOLD (UNaliasing by FOurier-encoding the overLaps 
using the temporal Dimension) [18], PARADISE [5], k-t 
BLAST [19], k-t FOCUSS [15], and the related methods. 
The image reconstruction is these method normally only 
involves zero-padding, inverse Fourier transform and image 
cropping, which is much more straightforward and efficient 
than the CS reconstruction.  
 
Interestingly, while CS requires sampling to be 
“randomized” to obtain incoherent artifacts which is critical 
for reconstruction, OLS mandates sampling to be on a 
structured lattice. In this paper, we propose a method to 
integrate CS with OLS so that both the sparsity and support 
constraints can be used simultaneously. The method 
randomizes the sampling on the lattice and minimizes a 
convex cost function with sparsity and data fidelity terms. 
Computer simulations in 3D MRI show that the proposed 
method allows greater accelerations with minimal 
degradation of the image quality.    
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II. MATERIALS AND METHODS 

In this section, we introduce the basic idea of the method 
and algorithm. We will start with the k-space data 
acquisition scheme. Then the image reconstruction 
algorithm and the computer simulations will be described.  

A. Data Acquisition 
 
The proposed method is unique in its data acquisition 
scheme. The data coverage is designed to benefit the 
imaging from both the CS and the OLS principles. First, the 
sampling points in the k-space always fall on the lattice grid 
determined by the support of the object to be imaged. 
Second, the sampling points include only a subset of lattice 
grids, which is randomized according to the CS theory.  
  
To design such sampling scheme, we first specify the OLS 
sampling lattice based on the support of the object. A 
number of literatures has covered this topic [4-6]. Therefore 
only a brief summary is provided here. For simplicity, we 
use a 2D example shown in Fig. 2 to illustrate the concept. 
Let 1vr and 2vr are two spatial packing vectors that optimally 
pack the support of the object in the 2D space. Fig. 2 (a) 
shows two such vectors for an object with a support as the 
shaded diamond. Repeating the diamond on all grid points 
generated by the linear combinations of the two vectors 
packs the supports tightly, but causes no real aliasing. 
According to the OLS, the optimal k-space signal sampling 
lattice can be generated by 2unum rr

+ where m and n are 

integers, where 1ur and 2ur are two sampling vectors that 
satisfy 
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where •  represents the inner product. The two sampling 
vectors corresponding to the vectors in Fig. 2(a) is shown in 
Fig. 2(b). For the lattice sampling, the sampling density is 
defined as 
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Note that the conventional rectilinear sampling corresponds 
to the case where the support is rectangle-shaped and the 
two packing vectors are orthogonal. Due to the more 
compact packing of the object support in OLS, the sampling 
density becomes smaller. As the result, only a reduced 
number of k-space data is required for a particular k-space 
coverage and the imaging speed can be accelerated 
accordingly. 
 

 

 
 
 

Fig. 2: Illustration of k-space sampling lattice for an object 
with a diamond-shaped support: (a) the object support and 
the compact packing vectors; and (b) the corresponding 
optimal sampling vectors and the lattice.  

 
The second step in the data sampling design is to select a 

subset of randomized grid points from the lattice. A number 
of methods have been proposed in the literature. A simple 
approach is to generate the set based on a 2D uniform 
random distribution. Alternatively, 2D Gaussian distribution 
can be used to enforce weighting so that the central k-space 
will be sampled more densely than the outer k-space. This 
can be justified by the fact that k-space energy of most MR 
images is concentrated in the lower spatial frequencies. In 
this paper, the method that uses Poisson disc is adopted to 
generate the set from the lattice. This method can generate 
“randomized” points that are more favorable for CS 
reconstruction. A comparison of the regular CS sampling 
pattern (with central weighting) and the proposed CS 
sampling pattern is shown in Fig. 3. Note that the overall 
sampling is reduced by two complementary factors: (1) the 
random undersampling of the grids; and (2) the reduction of 
sampling density due to the optimal lattice structure. In the 
example shown in Fig.2, an additional factor-2 time saving 
can be achieved by the proposed method, as compared with 
the conventional CS imaging.  
 

 

 
 

Fig. 3: Illustration of the randomized k-space sampling 
patterns for the object support in Fig. 2 in: (a) Cartesian 
coordinate as in the conventional CS imaging; and (b) the 
lattice grid in the proposed method. The red dots represented 
the sampled points (in 3D MRI, each dot represents one 
frequency encoding).  
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In practical 3D MRI, each dot in Fig.2 and Fig.3 can 
represent one frequency encoding. On this dimension, 
spatial localization can be simply resolved by an inverse 
Fourier transform because no undersampling exists along 
the frequency encoding direction.  
 

B. Image Reconstruction 
 

Given the acquired k-space data as specified, the image 
reconstruction in the proposed method involves two steps: 
the first step is to reconstruct an image using the CS. The 
image has a rectangular FOV which may contains more than 
one whole or partial aliases of the object support. In the 
second stop, a spatial mask is applied to crop the desirable 
image from the FOV according to the object’s support.  
 
The acquired k-space data on the lattice is related to the 
underlying image x by  
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r

x  represents the continuous Fourier 

transform of the image at the spatial frequency k
r

, and 
)(•δ  is the spatial sampling function. Note that the set of 

(m,n) only covers the selected random points in the proposed 
method. For simplicity, we rewrite Eq. (3) in a vector form 

Φxy =  where Φ  represents the Discrete Fourier 
transform (DFT). Note that here y represents the zero-
padded k-space data on a rectilinear coordinate of which the 
lattice grids is a subset; and x represent the image in the 
FOV with potential partial aliasing so that its DFT will be 
consistent with the data y.  
 
To reconstruct the image in the first step, we invoke the 
problem formulation on in the CS reconstruction 
 

Φxyx
x

=Ψ  subject to  )( min                          (4) 

where )(xΨ represents the image sparsity which can be 

based on the Total Variation (TV), or the L1 norm of the 
signal in an appropriate compression domain (such as 
Wavelet transform or DCT). The above problem can be 
turned into an unconstrained convex optimization problem:  
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2

Φxyx
x

−+Ψ λ                          (5) 

where λ  is a regularization parameter. Note that the first 
term enforces the image sparsity and the second term 
imposes the data consistency on the sampled lattice grids (in 
the L2 sense). In this paper, TV is used to measure the image 
sparsity, which is optimal for piece-wise constant or smooth 
images. The minimization is achieved by using a non-linear 
conjugate gradient method which is very efficient. Note that 

extra small regularization parameters lead to oversmoothing 
in the reconstructed image. Typically λ is set by 
experimental trials or the L-curve method to strike a balance 
between the data fitting term and the oversmoothness of the 
images.   
 
The second step is simply to crop the image according to its 
object support to eliminate the aliasing. All algorithms are 
implemented in Matlab.  
 

C. Validation Using Computer Simulations 
 
To test the algorithm, computer simulations are performed 
which are based on a set of real brain MRI dataset. The data 
were acquired on a healthy volunteer on a 1.5 T scanner 
using a head coil and fast spin-echo sequence. The data size 
is 128 by 128 by 32. In simulations, the third dimension is 
assumed to be the frequency encoding. The two leading 
dimensions are assumed to be phased encodings, which are 
retrospectively decimated according to the sampling pattern 
derived (as illustrated in Fig. 3). The acceleration factor (R) 
is set to be 3 for the conventional CS and 6 for the proposed 
method. Reconstructions from the conventional CS and the 
proposed method will be compared.  
 
 

III. RESULTS 
 
The reconstruction result is shown in Fig. 4. A 
representative slice reconstructed from 1/3 of the data using 
the conventional CS method (left) and from 1/6 of the data 
using the proposed method (right) are compared. As can be 
seen, comparable reconstruction quality was obtained using 
the proposed method, even it used only 1/6 of the full data. 
This indicates that the proposed method, by utilizing the 
randomized lattice sampling in CS, can further improve the 
acquisition efficiency without sacrificing the image quality.  
 

 
 
Fig. 4: Representative slice reconstructed from 1/3 of the 
total data using the conventional CS method (left) and from 
1/6 of the data using the proposed method (right).   
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IV. DISCUSSION 
 
Compressive sensing and optimal lattice sampling use 
different constraints and have drastic different requirements 
on the k-space sampling scheme. The former requires 
“randomized” sampling while the latter needs structured 
sampling. In this work, we propose a new imaging method 
to integrate the two so their complementary advantages can 
further improve the MRI speed.  
 
The brain anatomical imaging example was used to illustrate 
the utility of the method in this paper. The method can be 
potentially applied to other applications. For example, in 
dynamic cardiac imaging where the spatial-spectral structure 
of the (k,t) signal allows for efficient lattice sampling on 
non-rectilinear grid, as shown in [5]. In addition, although 
the object support may not be naturally limited, in real 
applications, intentional aliasing in certain areas can be 
tolerated without affect the diagnostic value. This is often 
the case in cardiac or abdominal MR where the region of 
interest is only part of the FOV (for example, the heart in the 
whole chest area). In such scenarios, the proposed method 
can still be utilized to achieve improved efficiency. 
 
There are a number of limitations to the current 
implementation and studies. First, in applying the proposed 
method, the support of the image is a priori information. 
Therefore in practice, a low resolution scout image might 
need to be acquired to provide this information so that the 
data acquisition scheme can be designed. Second, the 
method applies only to scenarios where the FOV of the 
object or its spectrum allows a more efficient lattice 
sampling. Otherwise, no gains from OLS can be achieved. 
Finally, more systematic studies are required to fully 
validate and characterize the proposed method. In the 
present studies, no quantitative analysis of the reconstructed 
image quality is performed. Quantitative measures such as 
signal-to-noise ratio (SNR) and artifacts power will be 
included in the future studies. In addition, more systematic 
comparisons with the conventional CS reconstruction and/or 
the conventional OLS imaging methods may provide further 
insights to the proposed method.  
 
The proposed method is currently limited to single-channel 
k-space data. Although straightforward extension to multi-
channel data acquired using parallel receivers is possible, 
more synergetic integration of the method with the parallel 
imaging systems can potentially provide additional benefits 
and deserve further investigations. 

REFERENCES 
 
[1] E. Candès, J. Romberg, and T. Tao, "Robust uncertainty 

principles: Exact signal reconstruction from highly 

incomplete frequency information," IEEE Transactions on 
information theory, vol. 52, pp. 489-509, 2006. 

[2] D. Donoho, "Compressed sensing," IEEE Transactions on 
information theory, vol. 52, pp. 1289-1306, 2006. 

[3] M. Lustig, D. Donoho, and J. M. Pauly, "Sparse MRI: The 
application of compressed sensing for rapid MR imaging," 
Magn Reson Med, vol. 58, pp. 1182-95, Dec 2007. 

[4] Willis NP, Bresler Y. Lattice-theoretic analysis of time-
sequential sampling of spatiotemporal signals. Part I. IEEE 
Trans Info Theory 1997;43:190–207. 

[5] B. Sharif and Y. Bresler Adaptive Real-time Cardiac MRI 
Using Paradise: Validation by the Physiologically Improved 
NCAT Phantom, in Proc. of IEEE Intern. Symp. Biomed. 
Imag.2007; 1020-1024. 

[6]   D. E. Dudgeon and R. M. Mersereau, Multidimensional 
Digital Signal Processing, Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey, 1984 

[7]    Liang ZP, Jiang H, Hess CP, Lauterbur PC. Dynamic imaging 
by model estimation. Int J Imaging Syst Technol 
1997;8:551–557. 

[8] K. King, "Combining compressed sensing and parallel 
imaging," in In: Proceedings of the 16th Annual Meeting of 
ISMRM Toronto, 2008, p. 1488. 

[9] B. Wu, R. P. Millane, R. Watts, and P. Bones, "Applying 
compressed sensing in parallel MRI " in In: Proceedings of 
the 16th Annual Meeting of ISMRM Toronto, 2008, p. 1480. 

[10] B. Liu, F. M. Sebert, Y. Zou, and L. Ying, "SparseSENSE: 
randomly-sampled parallel imaging using compressed 
sensing," in In: Proceedings of the 16th Annual Meeting of 
ISMRM Toronto, 2008, p. 3154. 

[11] C. Zhao, T. Lang, and J. Ji, "Compressed sensing parallel 
imaging," in In: Proceedings of the 16th Annual Meeting of 
ISMRM Toronto, 2008, p. 1478. 

[12] D. Liang, B. Liu, J. Wang, and L. Ying, "Accelerating 
SENSE using compressed sensing," Magn Reson Med, Sep 
25 2009. 

[13] L. Marinelli, C. J. Hardy, and D. J. Blezek, "MRI with 
Accelerated Multi-Coil Compressed Sensing" in In: 
Proceedings of the 16th Annual Meeting of ISMRM Toronto, 
2008, p. 1484. 

[14] C. Chang and J. Ji, "Compressed sensing MRI with multi-
channel data using multi-core processors," Magn Reson 
Med,2010; 64:1135–1139 

[15] Jung H, Sung K, Nayak KS, Kim  EY and Ye JC, k-t 
FOCUSS: A general compressed sensing framework for high 
resolution dynamic MRI, Magnetic Resonance in Medicine, 
2009; 61(1):103-116.  

[16]  S.K. Nagle and D.N. Levin, Multiple Region MRI, Magnetic 
Resonance in Medicine 1999,41:774–786. 

[17]  X. Hu and T. Parrish, Reduction of Field of view for Dynamic 
Imaging, Magnetic Resonance in Medicine 1999,31(6):691–
694.  

[18] Madore B, Glover GH, Pelc NJ. UNaliasing by Fourier-
encoding the Overlaps using the temporaL Dimension 
(UNFOLD), Applied to Cardiac Imaging and 
fMRI. Magnetic Resonance in Medicine 1999; 42: 813–828. 

[19] Tsao J, Boesinger P, Pruessman KP. k-t BLAST and k-t 
Sense: dynamic MRI with high frame rate exploiting 
spatiotemporal correlations, Magnetic Resonance in 
Medicine 2003; 50: 1031–1043. 

 
 
 
 

3739


	MAIN MENU
	CD/DVD Help
	Search CD/DVD
	Search Results
	Print
	Author Index
	Keyword Index
	Program in Chronological Order

