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Abstract— Nonlinear spatial encoding fields for magnetic
resonance imaging (MRI) hold great promise to improve on
the linear gradient approaches. Unlike the linear techniques,
the nonlinear encoding leads to a spatially varying signal-to-
noise ratio (SNR). This paper demonstrates the possibility to
tailor the encoding fields to focus the high SNR areas to a region
of interest. To achieve this, a metric is derived to quantify
the spatially dependent performance for arbitrary encoding
schemes.

I. INTRODUCTION

The desire to minimise acquisition time in an magnetic
resonance imaging (MRI) experiment has led to the contin-
ued introduction of novel imaging schemes from echo planar
imaging to parallel imaging [1]. These schemes use linear
gradient fields for spatial encoding and usually the fields are
setup to acquire samples of the object in the Fourier domain.
This supports an intuition regarding the relationship between
sampling parameters and image properties such as SNR and
resolution. More recently, nonlinear magnetic encoding fields
have been investigated and hold great promise to reduce the
imaging time of current linear gradient approaches. Such
schemes include PatLoc [2] and O-Space imaging [3].

In principle, analysis of the linear reconstruction employed
by these schemes is straightforward and the pixel covariance
matrix is easily defined. The difficulty lies in computing this
covariance for the large matrices associated with practical
image resolutions. Fourier imaging and its variations possess
a structure that can be exploited to simplify the computation.
However, the computation is intractable for arbitrary encod-
ing schemes justifying the development of an approximate
metric.

In this paper, we present an analysis of arbitrary encoding
schemes by considering frames in the object space. See [4],
[5] for an introduction to frame theory. We apply this theory
to derive a computationally efficient performance metric for
nonlinear encoding schemes.

The reconstruction error in MRI is spatially varying due to
a number of factors such as coil sensitivities, irregular sam-
pling and nonlinear encoding fields. Our metric quantifies
the spatially varying error for schemes that employ arbitrary
nonlinear encoding fields. We demonstrate the utility of the
metric by considering a tailored O-Space acquisition to target
a region of interest.

The paper is organised as follows. In Section II we review
frame theory and apply it to MR imaging. In Section III we
derive a performance metric based on the variance of the
reconstructed pixels. Finally, in Section IV we demonstrate
the usefulness of this metric by considering simulation
examples of O-Space imaging.

II. MRI RECONSTRUCTION USING FRAME THEORY

A typical MRI sequence involves the collection of a time
series of observations during the formation of a magnetisa-
tion echo. This process is repeated for different encoding
fields to obtain different projections of the object. Addi-
tionally, multiple receiver coils are often used, each with
its own spatially varying sensitivity to further encode the
object information. We denote the sensitivity function of the
lth coil as cl(·). The measurements for all coils, echoes and
time samples are obtained from the signal equation,

yl,q,i =
∫
ρ(x)cl(x)e−jφq,i(x)dx. (1)

In (1), φq,i(·) is the accumulated phase for the qth echo and
ith time point, which is critical for spatial encoding of the
unknown magnetisation, ρ(·). The phase can be calculated
as

φq,i(x) = γ

∫ ti

0

bq(x, τ)dτ, (2)

where γ is the gyromagnetic ratio, bq(x, t) is the encoding
magnetic field, and t = 0 denotes the time the excitation
pulse is applied. The reconstruction problem is to estimate
the object, ρ(·), from a sequence of projections {yl,q,i}.

We can view these projections as inner products on the
space of functions,

yl,q,i = 〈ρ, βl,q,i〉, (3)

where we have an index for each coil, l, echo, q, and time,
i. The encoding functions, βl,q,i, are given by

βl,q,i(x) = cl(x)ejφq,i(x). (4)

From this perspective, the reconstruction problem lends
itself to a frame theoretic formulation. Frame theory provides
results concerning the optimal reconstruction of a function
given a sequence of projections, exactly the situation we have
in MRI.

A. Matrix Formulation of Frame Theory

We begin with the definition of a frame followed by a
matrix formulation that is applicable to MRI reconstruction.
For a more rigourous introduction to frame theory consult
e.g. [4].

A sequence of functions, {Φi}i∈I , in a Hilbert space V ,
defined over a countable set, I, is a frame if there exists
constants, 0 < A ≤ B <∞ such that for all f ∈ V ,

A‖f‖2 ≤
∑
i∈I
|〈f,Φi〉|2 ≤ B‖f‖2 (5)
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where A and B are the lower and upper frame bounds,
respectively. We refer to the functions {Φi}i∈I as frame
elements. The frame bounds reflect the robustness of the
frame elements to perturbations. In the context of MRI, f is
the unknown magnetisation and V is the space of allowable
magnetisation functions. It is useful for our application
to consider frame elements Φl,q,i indexed by coil, echo,
and time sample. The definition is readily applicable by
considering indices from the set of tuples, I = {(l, q, i) ∈
[1, . . . , Nl]× [1, . . . , Nq]× [1, . . . , Ni]}.

When the condition in (5) is satisfied, reconstruction is
achieved using the dual frame [4]. In practice we only have
a finite number of frame elements so reconstruction of an ar-
bitrary continuous function is impossible. Consequently, we
are forced to restrict the space of functions via discretisation.
For this purpose we select a pixel basis, {χn(x)}Nn=1, so the
object can be represented by a linear combination of the
functions, χn(x). For example, images can be represented
using a rectangular basis where χn(x) = rectW (x − xn).
Mathematically, the basis defines a subspace, U , representing
the space of allowable functions,

U =

{
f ∈ V : f(x) =

N∑
n=1

fnχn(x)

}
. (6)

In this space, the problem of reconstructing an arbitrary
object is transformed to the problem of estimating a set of
coefficients, {fn}.

Measurements (or frame coefficients) of an unknown func-
tion are obtained via the analysis operator, T : V → CM ,
where M is the number of frame elements. The analysis
operator restricted to U is a map from CN to CM thus it
admits a matrix representation, with elements given by

T(l,q,i),n = 〈χn,Φl,q,i〉. (7)

The synthesis operator in this subspace is T ∗ : CM → U ,

T ∗n,(l,q,i) = 〈Φl,q,i, χn〉. (8)

which can be represented as T ′, where T ′ is the conjugate
transpose of T defined in (7).

Finally, we define the frame operator, Q : U → U as
the composition of the synthesis and analysis operators. In
matrix notation,

Q = T ′T (9)

The reconstruction operator using the dual frame [4] simpli-
fies to the Moore-Penrose pseudoinverse,

F = Q−1T ′ = (T ′T )−1T ′. (10)

When we select the frame elements to be the encoding
functions used in MRI, Φl,q,i = βl,q,i, and choose a pixel
basis, {χn}Nn=1, the analysis matrix in (7) becomes the
standard encoding matrix used in MRI literature [6],

E(l,q,i),n = 〈χn, βl,q,i〉 (11)

In this case, the measurements {yl,q,i} correspond to the
frame coefficients. In practice, the Dirac delta distribution is
often chosen as the pixel basis since it greatly simplifies the
computation of the encoding matrix.

III. PERFORMANCE METRICS

The impact of noise in the measurements must be con-
sidered for practical applications of the above theory. Re-
construction of noisy projections using the dual frame was
shown to give the minimum mean square error (MMSE)
estimate, with global performance given by the frame bounds
[5]. For nonlinear encoding fields, the error is spatially vary-
ing and a local performance metric is required. Although the
variance of each reconstructed pixel is a natural performance
metric, the computation is intractable for realistic resolutions
and thus we derive an appropriate approximation.

A. Reconstruction Variance

The signal model in (3) is modified to include additive
noise,

yl,q,i = 〈ρ, βl,q,i〉+ wl,q,i. (12)

A discretised object can be represented by the vector, f =
[f1, . . . , fN ]T , where the elements are, fn = 〈χn, ρ〉. We
construct the vectors, y = [y1,1,1, . . . , yNl,Nq,Ni

]T and w =
[w1,1,1, . . . , wNl,Nq,Ni

]T so (12) can be written as the matrix
equation,

y = Ef + w, (13)

with w ∼ N (0,Σ) for a general covariance matrix Σ.
We desire a frame operator that adequately models the

covariance so we consider the general case where the frame
elements are a linear combination of encoding functions,

Φl,q,i =
∑
l′,q′,i′

Γ(l,q,i),(l′,q′,i′)βl′,q′,i′ . (14)

This leads to frame coefficients that are a linear combination
of the MRI measurements. Let Γ be a matrix of weights with
elements Γ(l,q,i),(l′,q′,i′); the coefficients can be defined by
the matrix equation, g = Γy, with g ∼ N (ΓEf ,ΓΣΓ′).

The analysis operator is T = ΓE and recall the frame
matrix is Q = T ′T . The reconstructed coefficients are given
by f̂ = Fg, where F is the reconstruction operator in (10).
The covariance of the reconstructed coefficients is

X = (T ′T )−1T ′ΓΣΓ′T ′(T ′T )−1 (15)

The definition of Σ allows the following decomposition,
Σ−1 = Σ−1/2Σ−1/2. The main result of this section is that
selecting the set of weights to be

Γ(l,q,i),(l′,q′,i′) = [Σ−1/2](l,q,i),(l′,q′,i′) (16)

yields a covariance of

X = Q−1. (17)

This equation reveals the close link between the frame
elements, frame operator, and the resulting covariance. Im-
portantly, the relationship is valid irrespective of the mea-
surement noise properties, by the appropriate selection of
the weighting matrix.
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When the condition in (16) is satisfied, the frame matrix
can be written in terms of the discretised encoding functions
as Q = E′Σ−1E or in terms of matrix elements,

Qn,m =
∑
l,q,i

∑
l′,q′,i′

〈βl,q,i, χn〉Σ−1
(l,q,i),(l′,q′,i′)〈χm, βl′,q′,i′〉.

(18)

This process of transforming the measurements has very
close ties to ‘noise whitening’ in linear estimation theory [7].
This is required in Section IV to analyse a parallel imaging
scheme, where noise is correlated between receiver channels
[6].

B. Approximate Reconstruction Variance

The pixel variance is obtained by extracting the diagonal
elements of the covariance matrix in (17). This is not a
suitable metric since the inverse is not feasible to compute for
practical matrix sizes. We require an alternative performance
metric that: 1) reflects the variance of each reconstructed
pixel, 2) is valid for arbitrary encoding fields, and 3) is com-
putationally efficient. In previous work, we defined a simple
metric related to the width of the point spread function,
extracted from the frame matrix [8]. In this paper, we use a
series expansion to define a second-order approximation to
the variance.

To this end we exploit the fact that, for most practical
imaging schemes, the frame matrix is approximately diago-
nal. For example, in standard Fourier imaging the matrix
is exactly diagonal and the only distortion is due to the
truncation effects associated with the projection operator. The
approximate diagonal nature of the frame matrix, Q, suggests
a decomposition of the matrix into its diagonal part, Λ, and
off-diagonal part, Z, such that Z = Q − Λ. We take the
Taylor series of Q−1 about Q = Λ to get the mth order
approximation,

Q−1
m =

m∑
n=0

(−Λ−1Z)nΛ−1. (19)

The series will converge when ‖Λ−1Z‖ < 1, where ‖ · ‖
denotes the subordinate matrix norm. By definition, Λ is
diagonal so Λ−1 is easily computed, which leads to approx-
imations that can be efficiently computed. If we consider the
diagonal elements of the first order approximation, Q−1

1 , we
notice that diag(Λ−1ZΛ−1) = 0, so we need to use the
second order approximation for useful results.

The computation is further reduced since the diagonal
components can be calculated individually as follows. Let
zn,p denote the elements of Z and let the diagonal elements
of Λ−1 be αn, n = 1, . . . , N . The diagonal elements of Q−1

2

are

[Q−1
2 ]pp = αp

(
1 + αp

N∑
n=1

z2
n,pαn

)
(20)

which can be calculated row by row, without the need to
calculate or store the large matrix, Q.

The metric defined by (20) satisfies all of our require-
ments. It is relatively easy to compute, applicable to general
encoding schemes and reflects the variance of individual
pixels. In Section IV we use our metric to produce a map
of the spatially varying performance of different imaging
configurations.

IV. SIMULATION EXAMPLE

The metric developed in this paper is demonstrated by con-
sidering the problem of tailoring an acquisition to focus on
a region-of-interest. To elaborate suppose we are interested
in imaging the right side of the cerebral cortex; we don’t
care about the image quality on the left side. In this section,
we prove that it is possible to tune the nonlinear encoding
fields to obtain improved imaging performance in the desired
region. Our metric allows us to determine the performance
across the image a priori, necessary for experimental design.
We examine this problem in the context of the recently
developed O-Space imaging [3].

A. O-Space Imaging

O-Space imaging is a technique that uses nonlinear encod-
ing fields and boasts rapid imaging times [3]. The technique
consists of a quadratic encoding field that is translated after
every echo. The field is given by bq(x, t) = bq(x) =
G‖x − rq‖2 so the phase functions defined in (2) are
φq,i(x) = γG‖x − rq‖2ti and the encoding functions in
(4) become

βl,q,i(x) = cl(x)ejγG‖x−rq‖2ti . (21)

The field centre points, {rq}, can be selected to focus the
imaging on a region of interest. The complicated structure of
this encoding precludes a performance analysis similar to that
of the PatLoc technique [9]. The frame-oriented approach
developed in this paper is readily applicable.

We proceed following the theory developed in Section III.
The noise in a parallel MRI experiment is correlated be-
tween channels, not between echoes or time samples, thus
Σ−1

(l,q,i),(l′,q′,i′) = δq,q′δi,i′Σ−1
l,l′ . We impose the noise whiten-

ing condition in (16) and adopt the ideal pixel basis of delta
functions, χi(x) = δ(x − xi). The frame matrix elements
are computed using (18) as

Qn,m = κ(xn,xm)
∑
q,i

ejγ(bq(xn)−bq(xm))ti (22)

where κ is the noise-adjusted coil kernel given by

κ(xn,xm) =
∑
l,l′

cl(xn)Σ−1
l,l′cl′(xm). (23)

This coil kernel arises from the use of multiple receiver coils
with spatially varying sensitivities.

We now use the metric in (20) to quantify the spatially
varying performance for different centre point configurations.
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(a) (b) (c)

Fig. 2: The numerical phantom (a) used for simulations,
obtained from a T2 weighted image of a human brain. The
reconstructed images (b,c) from the centre point configura-
tions in Fig. 1(a,b), respectively.
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Fig. 1: The proposed metric for different centre point config-
urations of an O-Space imaging scheme. The centre points
are marked with white ×’s.

B. Tailored Acquisition
O-Space imaging acquisitions are simulated with parame-

ters comparable to the original implementation in [3]. Eight
receive coils are placed concentrically around the field-
of-view with sensitivities simulated by the magnetostatic
limit of the Biot-Savart equation. Eight echoes are collected
representing a high undersampling of R = 16. We consider
two different centre point configurations. The first acquisition
has centre points arranged evenly on both sides of the field
of view. The second acquisition has centre points arranged
on the left side of the field-of-view. In both cases, the final
image resolution is 128 × 128 and the number of readout
samples is Ni = 256.

For this setup it is cumbersome to perform the matrix
inversion and the advantage of our metric is apparent. The
metric is calculated for both centre point configurations to
demonstrate the spatially varying performance. Fig. 1 dis-
plays the variance maps for each centre point configuration.
The centre points are marked on the corresponding maps
with white ×’s. When the centre points are located to the
right side of the field-of-view, the variance on the left side
is decreased. This is intuitive since the quadratic encoding
improves with increasing distance from the centre points.
The metric quantifies this effect and allows us to design a

configuration that leads to decreased noise in the region of
interest.

The data sets are obtained through simulating the acqui-
sition of a numerical brain phantom in Fig. 2(a). Complex
Gaussian noise is added to the measurements with a standard
deviation equal to 5% of the mean phantom intensity. We
reconstruct the images by solving the large matrix equation
using a conjugate gradient algorithm similar to [6].

Fig. 2(b,c) contain the reconstructed images for the centre
point configurations shown in Fig. 1(a,b), respectively. To
quantify the reconstruction error in the region of interest,
the mean squared error (MSE) of the pixels located on the
left side of the image is calculated. The MSE in this region
is 0.0103 and 0.0082 for Fig. 2(b,c), respectively. Fig. 2(c)
corresponds to right-sided centre points and exhibits smaller
error on the left side of the image, particularly near the skull.
Conversely, the evenly distributed centre points result in an
image with more uniform error, illustrated in Fig. 2(b).

V. CONCLUSION

We apply the theory of frames to MRI schemes that
employ nonlinear spatial encoding magnetic fields. This
theory allows the derivation of a computationally efficient
and intuitive performance metric. The metric is a second
order approximation to the variance of the reconstructed
pixels and can be applied to arbitrary encoding schemes.
We calculate our metric for O-Space imaging examples to
demonstrate the spatially varying performance. In this way,
we can devise acquisition schemes that provide superior
performance in a given region of interest.
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