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Abstract— One of the main sources of signal degradation in
rapid MR acquisitions, such as Echo Planar Imaging (EPI),
is magnetic field variations caused by field inhomogeneities
and susceptibility gradients. If unaccounted for during the
reconstruction process, this spatially-varying field can cause
severe image artifacts. In this paper, we show that correcting for
the resulting degradations can be formulated as a blind image
deconvolution problem. We propose a novel joint acquisition-
processing paradigm to solve this problem. We describe a
practical implementation of this paradigm using a multi-image
acquisition strategy and a corresponding joint estimation-
reconstruction algorithm. The estimation step computes the
spatial distribution of the field maps, while the reconstruction
step yields a Minimum Mean Squared Error (MMSE) estimate
of the imaged slice. Our simulations show that this proposed
joint acquisition-reconstruction method is robust and efficient,
offering factors of improvement in the quality of the recon-
structed image as compared to other traditional methods.

I. INTRODUCTION

In a two-dimensional (2D) slice-selective imaging exper-
iment, the signal induced by an elemental volume dV ,
dxdydz in an MRI receiver coil is given by [1]

dS ∝ f(x, y, z, t) exp

{
i2π
[
xKx(t) + yKy(t)

+ γ
∫ t

0

∆B(x, y, z, τ)dτ
]}

dV (1)

where f(x, y, z, t) represents the spatio-temporal distribution
of the object, γ is the gyromagnetic ratio (in Hz/T), and
Kx(t) and Ky(t) denote the spatial frequencies encoded by
the read-out and phase gradients at time t, respectively. The
term ∆B(x, y, z, t) represents any deviation from the desired
magnetic field as controlled by the gradients. The sources of
these inhomogeneities are either external (e.g., main field or
magnetic field gradient inhomogeneities, gradient coil non-
linearity), or due to internal differences between the mag-
netic susceptibility of different materials. The susceptibility-
induced inhomogeneities can be very severe, particularly
when they arise across air/tissue or air/bone interfaces.
For example, in the brain, large susceptibility gradients
occur around the anterior-frontal regions, temporal lobes and
around the sinuses [2], [3]. In the absence of ∆B(x, y, z, t),
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it is clear from (1) that the evolution of the spatial frequencies
Kx and Ky with time defines the grid over which measure-
ments are made. In the simple case of a regular rectangular
grid, the relationship between the induced signal S and the
object f amounts to a simple Fourier transform operation.
The inhomogeneities ∆B(x, y, z, t), however, perturb the
effective trajectory of Kx(t) and Ky(t). If unaccounted for
during the reconstruction process, this will result in severe
image artifacts including twisting in the shape of the ROI
(geometric warping) and loss of signal (signal drop) [3].
These degradations can have detrimental effects, especially
in tasks that require geometric accuracy, such as registration
of fMRI data to brain atlases for activity localization [4]–
[6], neurosurgery and computer assisted surgery [7], [8],
rigid-body (e.g., cortices) segmentation, etc. Ultimately, this
influences the statistical decision about the presence/absence
of neuronal activation. Since the inhomogeneity term scales
with magnetic field strength and long read-out time, we
note that this problem only gets worse with the advent of
machines with stronger magnetic fields. Traditional solutions
offered in the literature can generally be divided into two
classes: acquisition-based and processing-based methods.
Acquisition methods modify the pulse sequence to carefully
preempt inhomogeneity in specific regions via the careful
calibration of gradients [9]–[12]. This only partially corrects
for the problem in one region, while increasing artifacts in
other regions. Also, the additional pulse sequences often
require an increase in the scan time, and place high demand
on the shim coils. Processing-based algorithms attempt to
reconstruct the object in two distinct steps. First, an es-
timate of the field maps ∆B(x, y, z) is computed either
via a separate acquisition or from the distorted data itself.
Then, the data is unwarped/de-blurred according to the field
map estimate using post-processing methods. [3], [13]–[18].
This approach often fails in instances of inhomogeneity-
induced signal loss [16], as it becomes very difficult to (a)
estimate inhomogeneity and (b) reconstruct data in regions
overwhelmed by noise. Additionally, estimating the field
maps from a separate scan is often inaccurate due to the
estimate itself being warped and, due to its dependence
on subject motion and dynamic changes with physiological
conditions [18]. Recently, one method [19] was proposed in
the literature which suggests the joint estimation and correc-
tion of distortion artifacts via a slight modification to EPI.
However, similar to most processing-based techniques, the
performance of this approach is inherently limited by signal
loss. In this work, we advocate a more universal approach
that relies on the joint design of the acquisition method
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and corresponding reconstruction algorithm. Specifically, we
propose a practical multi-acquisition method that captures
EPI data in a diverse fashion. An optimally adapted recon-
struction algorithm estimates the field map that best explains
the diverse measurements and reconstructs a MMSE estimate
of the original object. The diversity of the measurements
allows us to reconstruct the object, even in cases of severe
signal loss. This novel paradigm also generates an estimate
of the field maps, without any prior knowledge about the
field maps. The rest of the paper is organized as follows.
Section II presents the forward imaging model and introduces
the problem. We propose one solution in Section III-B, and
present the corresponding simulation results in Section IV
and concluding remarks and future work in Section V.

II. THEORY

A. Image formation forward model

In this section, we present the forward model which
describes the 2D image formation process in EPI. Starting
from (1), and using the discrete spatial frequency sampling
of EPI, (Kx(t) = m∆kx,Ky(t) = n∆ky), −Nx/2 ≤ m ≤
Nx/2,−Ny/2 ≤ n ≤ Ny/2, we can can write the signal
from the selected slice as

S[m∆kx, n∆ky] =

∫ ∆Z/2

−∆Z/2

dz

∫∫
f(x, y) exp

{
i2π
[
m∆kxx

+ n∆kyy + γ∆B(x, y, z)t
]}

dxdy, (2)

where ∆Z is the slice thickness and t is the sampling time
for EPI given by t = TE + m∆t + nT , TE is the echo
time, ∆t is the dwell time, and T is the time between two
consecutive phase-encode lines n. Going from (1) to (2),
we have approximated f(x, y, z, t) with f(x, y, z = 0) and
ignored T1/T2 relaxation effects. We have also reasonably
assumed that the function ∆B is slowly varying compared
to the data acquisition window. The spatial variation of
∆B, however, is more complicated and is determined by
the underlying sources of inhomogeneities. In this paper, we
consider the following model for the inhomogeneity term:

∆B(x, y, z) ≈ g0(x, y) + g1(x, y)z, (3)

where we expanded ∆B(x, y, z) in z, with g0(x, y) and
g1(x, y) being the zeroth and first order Spatially-varying
Inhomogeneity Coefficients (SIC), respectively. The model
in (3) takes into account both, in-plane field inhomogeneities,
g0(x, y), and any susceptibility-induced field gradients across
the slice-selective z direction, g1(x, y). The majority of
existing inhomogeneity correction methods only consider
one of these terms at a time. Methods that focus on correct-
ing g0(x, y)-related artifacts, such as pixel shift and region
deformation, use signal processing methods to unwarp the
images using estimates of g0(x, y) obtained via field maps.
On the other hand, methods aiming to correct g1(x, y)-related
signal losses, which could be very severe, generally use
signal acquisition methods to recover the signal intensity in
a localized region [14]. In this paper, we aim to correct for
both artifacts using a joint acquisition-processing scheme.

Replacing (3) in (2) and integrating over z, we can then write
the resulting Nx ×Ny discretized measurements as:

S[m,n]=

∫∫
f(x, y)ei2π[m∆kxx+n∆kyy]

ei2π
γg0(x,y)(TE+m∆t+nT ) (4)

sinc [πγ∆Zg1(x, y)(TE +m∆t+ nT )] dxdy.

Reconstructing f(x, y) from the discrete samples S[m,n] is
a challenging task. In this paper, we make the reasonable
assumption that we are only interested in reconstructing
f(xp, yq) on the discrete sampling grid defined by the EPI
sequence. Furthermore, we assume that the object and the
SIC terms do not vary considerably inside the rectangular
pixel. It can be shown that this latter assumption allows us
to re-write (4) as:

S[m,n] =

Nx−1∑
p=0

Ny−1∑
q=0

f(xp, yq)e
i2π

[
mp
Nx

+ nq
Ny

]

ei2π
γg0(xp,yq)(TE+m∆t+nT )sinc

( m
Nx

)
sinc

( n

Ny

)
sinc [πγ∆Zg1(xp, yq)(TE +m∆t+ nT )] , (5)

where we have used xp∆kx = p/Nx and yq∆ky = q/Ny
and where the additional sinc terms arise due to the grid of
rectangular pixels. Equation (5) describes the forward model
for 2D EPI image formation, as corrupted by SIC in (3). The
transformation which maps f at (xp, yq) into S at (m,n)
is a 4D matrix. We can substantially simplify this tensor
relationship by observing that ∆t << T , which implies that
the SIC would have strong effects only along the y direction.
This fact is exploited in most EPI distortion correction
techniques [14]. Using some matrix manipulations, we can
show that the mth row in (5), Sm, can be written as:

Sm = sinc(m/Nx)
∑
p

ei2π
mp
Nx sxp . (6)

sxp is a 1×Ny vector given by

sxp = fpHxp , (7)

where fp is the pth row of the object, and Hxp
is the Ny×Ny

forward model matrix, mapping the spatial index yq to its
conjugate index n, for each xp, and is given by

Hxp
(yq, n) =e

i2π nq
Ny ei2π

γg0(xp,yq)(TE+nT )sinc(n/Ny)

sinc [πγ∆Zg1(xp, yq)(TE + nT )] . (8)

We have thus transformed the 4D tensor forward model of
(5) into N 2D forward model matrices. This will reduce the
complexity of the model without sacrificing its accuracy.

Finally, no realistic imaging model is complete without
taking noise into consideration. We thus write the measure-
ment as the sum of the signal in (7) and a noise term wp,
namely:

mp = fpHxp
+ wp. (9)
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B. Problem statement

We see from (6) that sxp
is the pth row of a matrix

obtained by taking the inverse 1D Discrete Fourier Transform
(DFT) across the rows of the matrix formed by stacking the
row vectors (sinc(m/Nx))−1Sm, m = 1, . . . , Nx. Thus, by
solving (7), we can then reconstruct the pth row of the object
from the vector sxp

. Only a few methods in the literature
attempt to correct for fMRI distortion via similar linear
systems formulation [16], [20], [21]. The lack in popularity
of this approach is due to two obstacles. First, in the presence
of noise, inverting Hxp

in (7) will yield highly unstable
solutions. This is particularly true in regions with low signal,
which is the case when the value of g1(xp, yq) is large. The
authors in [16] address this difficulty by separating Hxp into
two matrices: one corresponding to g1(xp, yq) effects and
the second includes the remaining effects. Then, the authors
invert the matrix due to g1(xp, yq) using truncated iterative
methods, thus reducing the effects of noise amplification.
The method in [16] is therefore unable to fully reconstruct
the signal in regions with large g1(xp, yq). The second
obstacle with the linear systems approach is that Hxp and
fp are both unknown. The authors in [16] make the common
assumption that g0(xp, yq) and g1(xp, yq) do not change
over the entire scan period and use a separate measurement
at the beginning of the scan to get an estimate of these
quantities. As pointed out in Section I, this assumption is
not realistic. The reconstruction problem thus falls under
the class of parameterized blind signal deconvolution [22].
Standard methods used to estimate Hxp

and fp become
unreliable at low signal to noise ratios. As an example, Fig.
1 illustrates different profiles of Hxp at typical values of
g1(xp, yq): in the Orbito-Frontal cortex g1 is reported to be on
the order of 0.2−0.3 mT/m at 3T [12]. We note immediately
the low value of the response around Ky = 0. This implies
that the corresponding measurement will be dominated by
noise and that processing-based techniques for estimating
the forward model matrix Hxp will be not be robust. In
this paper, we offer a joint acquisition-reconstruction method
to solve the following problems: (a) estimate the SIC (or,
Hxp

) without using any prior knowledge and, (b) obtain a
Linear MMSE (LMMSE) reconstruction of the object, fp,
∀p. Hereafter, and for simplicity, we consider only one row
in our discussion and drop all xp and p indices from (9).
Our simulation results, naturally, will include all rows.

III. JOINT ACQUISITION-RECONSTRUCTION

A. Formulation

In order to solve the problems presented above, we ad-
vocate using a joint acquisition-processing approach. The
proposed method does not require prior-knowledge of the
field maps ∆B(x, y). The general approach consists of the
following three steps S1, S2 and S3:
(S1) Acquire K measurements at different points in time
{m1, ...,mK}, each given by

mk = f Hk

(
g
)

+ wk, (10)
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Fig. 1. (a) The magnitude of Hxp , for p = 32, shown as a function of
yq and Ky for common EPI acquisition parameters. For a given yq (and
hence g0(xp, yq) and g1(xp, yq)), the profile represents the response as a
function of spatial frequency Ky . Example profiles are shown in (b). Note
the low response around Ky = 0, yielding signal drop and reconstruction
difficulty in the presence of noise. Recall that the profile does not change
significantly with Kx.

where Hk

(
g
)

represents the forward model matrix associated
with the kth acquisition which is related to the underlying
forward model matrix H of (8) by

Hk

(
g
)

= Tk
(
H;g

)
(11)

for k = 1, . . . ,K. Tk is a carefully chosen transformation
with specific properties discussed below. This is the only
required change in acquisition. We present one example
transformation in Section III-B. Note that Tk is clearly a
function of g, the vector of SIC terms.
(S2) Using the K measurements {m1, ...,mK}, we estimate
the underlying SIC g to be the vector which best explains
measurement mj, given mi, ∀i. That is,

ĝ = argmin
g

∑
1≤j≤K

∥∥∥f̂ [m̃;g]Hj

(
g
)
−mj

∥∥∥2

, (12)

where m̃ is the concatenated K-channel measurement vector
and f̂ [m̃;g] is an estimate of the object reconstructed from
all the measurements m̃, assuming the actual SIC is given
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by g. This object estimate is computed using step S3 below.
(S3) Given an estimate of g, compute the set of K forward
model matrices Hk, and reconstruct an estimate of the object
f̂ using multi-channel deconvolution formulation [22],

f̂ [m̃; ĝ] = argmin
f

∥∥∥m̃− fH1:K

(
ĝ
)∥∥∥2

+ λJ(f), (13)

where H1:K is the concatenation of the K-channel forward
model matrices, estimated assuming SIC distribution ĝ. J(f)
is a regularization term.
Steps (S1)-(S3) above, along with (11), (12) and (13) define
what we refer to hereafter as the Multi-acquisition Blind
Estimation and Reconstruction (MBER) approach. We note
the following important remarks:

(a) Because we now acquire K images instead of one, we
will need to sacrifice quality (e.g., SNR, resolution) in
each measured image mk in order to keep the acquisition
time constant. This penalty term is included in each Hk

and is a function of K and Tk.
(b) We advocate that the choice of Tk should satisfy the

following two properties:
Property P1: The set of matrices {Hk} should result
in diverse measurements of f . Intuitively, this can be
motivated by the following observation: if all Hk were
similar, i.e. minimally diverse, then this compromises
our ability to discriminate measurements, and hence the
estimation step (12) is adversely affected.
Property P2: The matrices should yield measurements
with a quality metric larger than the underlying noise
level. Indeed, a non-careful choice of the {Hk} may
yield measurements that are dominated by noise. This
negatively affects the reconstruction step (13).

(c) Equations (12) and (13) define a truly joint estimation-
reconstruction approach for computing SIC terms and
recovering the object. The formulation uses an L2 metric
in both equations. However, other metrics could easily be
adopted, including L1 norm (in estimation), probability
of detection, classification performance (in reconstruc-
tion).

(d) Equations (11), (12) and (13) are the foundation for a
joint acquisition-reconstruction paradigm. These equa-
tions define a unifying framework which can be used to
jointly optimize acquisition and processing parameters
for minimizing distortion artifacts in EPI.

In this work, we propose one acquisition method Tk, and a
corresponding reconstruction algorithm, and compare its per-
formance to traditional inhomogeneity correction methods.

B. Acquisition method

We describe here one multi-acquisition method associated
with step (S1) of Section III-A above.

It is obvious from estimation step (S2), and property Prop-
erty P1, that we desire a transformation which modulates
the SIC terms in (8) so as to generate a diverse set of

measurements. We propose one such transformation Tk:

Tk
(
H
)
(g) = e

i2π nq
Ny ei2π

γg0(xp,yq)(TEk+nT )sinc(n/Ny) (14)
MKsinc [πγ∆Z (g1(xp, yq)(TEk + nT )− gckτc)]

where Mk denotes a magnitude penalty term, TEk denotes
the value of the kth echo time and gck is a compensation
gradient introduced during the kth acquisition, for a period
of time τc. It is clear from the form of (14) that the set
of compensation gradients {gck} can be used to shift the
sinc around, and thus modulate the g1(xp, yq) term and Hk.
This also has the effect of modulating the magnitude of the
measurements mk. Similarly, the variable echo time TEk
can be used to modulate the g0(xp, yq) term, Hk, and the
phase of mk. The pulse sequence which generates such a
forward model matrix is essentially a variable echo time
“z-shim” sequence [11], whereby a known gradient area is
introduced along the z-direction during acquisition, each at
a given echo time. This is repeated K times for each slice
of interest. Associated with this multi-acquisition is a trade-
off for acquiring K − 1 additional measurements. In other
words, the z-shim pulse sequence should be designed to
keep the imaging time constant. This could be achieved via
the reduction of the number of samples captured (“under-
sampling” of the FOV), increasing the scan bandwidth (if
possible), reducing the number of imaged slices, etc. In this
paper, we adopt a z-shim protocol whereby a reduced number
of distinct slices per volume is acquired during the same
Repetition Time TR. It can be shown that the penalty term
associated with this trade-off is an exponential reduction in
measurement SNR as a function of K (see (15)). The reason
for this decay is due to the fact that the slice of interest is now
acquired (excited) K times during the same TR (i.e., partial
saturation). We refer the reader to [23] for more details on
the sequence. Namely, when the data is acquired with a flip
angle equal to Ernst angle of gray matter, the magnitude of
Hk is reduced by a factor MK , given by

MK =M0

√
1− e−TR/T1K

1 + e−TR/T1K , (15)

where T1 is the relaxation constant of gray matter and M0

is the maximum available magnetization [23].
According to properties P1 and P2 from Section III-A,

the choice of the set of compensation gradients {gck} and
the set of echo times {TEk} is crucial to the performance of
the MBER method. In fact, the choice of {gck} and {TEk}
could be optimized to guarantee a given reconstruction
performance. Our paradigm enables us to readily tackle such
a problem. This is beyond our scope here. In this paper,
we choose the {gck} and {TEk} to be uniformly spaced on
a pre-defined range of interest. Specifically, we choose the
echo times uniformly between 20ms and 30ms, with steps of

1
100 s. We can show via mathematical manipulations that this
chosen step size would guarantee the estimation of g0 terms
that are in the range of ±100Hz. The compensation gradients
are chosen in the range ±9 mT ms/m, carefully chosen to
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correct for g1 terms that are in the range of ±300µT/m. We
assume a 3T main magnetic field in our simulations.

Finally, we note here that one important novelty of our
work is the joint acquisition-reconstruction framework, intro-
duced in Section III-A, which exploits the acquisition diver-
sity in order to reconstruct the object. The modification to the
EPI pulse sequence we presented here is one example multi-
acquisition sequence which can be quickly used to generate
such diverse acquisitions. Other modifications, with different
diverse multi-acquisition strategies and corresponding trade-
off space, could be proposed. This is one very important
advantage of our paradigm.

C. Corresponding reconstruction method

We use our implementation of an adaptive Simulated An-
nealing algorithm to numerically solve (12). Then, we recon-
struct the object using an implementation of the Landweber
iterative algorithm. The reconstruction-estimation steps are
iteratively repeated until a stopping criteria is reached. We
direct the reader to standard signal reconstruction references
for more information on this topic [22], [24]. We should
point out here that we expect our iterative inversion of the
multi-channel matrix H1:K to be less susceptible to noise
amplification. The reason for this is that we are acquiring
K measurements, each of which generated by a forward
model matrix with a differently shifted sinc (14). Thus, a
given region with large g1(xp, yq) is less likely to suffer from
complete signal loss in all K measurements, as compared
to methods which only acquire one measurement. This
will overcome the need to implement complicated inversion
method such as the one reported in [16].

IV. SIMULATION RESULTS

We report in this section the results of our simulations. Fig.
4a illustrates the proton density of an object with zeroth and
first order SIC terms shown in Figs. 4b and 4c, respectively.
The chosen range of SIC is shown on the color bar. We
use this object to simulate a standard EPI acquisition. The
result is shown in Fig. 4d. We note the typical EPI artifacts
reproduced here, including geometric deformation and signal
drop around regions in the image. The Signal-to-Noise Ratio
(SNR) was set here to a typical value of 40dB. Figure 4e
illustrates the result of a second acquisition, obtained using
the uniform z-gradient and TE stepping described in the
previous section. Note that the top ellipse is now brighter
while the ellipse on the right suffered from a signal drop.
This is an expected behavior of z-shimming which corrects
for artifacts in one region of the image at the expense of
others. We argue that, in order to obtain a fair comparison,
we only should consider methods that do not require prior
knowledge nor a separate measurement of field maps. One
such method is the established SSQ algorithm [11], [23].
SSQ collects multiple z-shimmed measurements of the object
with carefully chosen and calibrated z-compensation gradi-
ents [12] and, combines the measurements using the root sum
of the magnitudes squared. Unlike our method, SSQ needs
a careful calibration step in order to choose the z-gradient

steps. Our multi-acquisition approach uniformly picks the
compensation steps over a pre-defined range of interest. Fig.
4f displays the output of SSQ using K = 3 measurements.
The corresponding RMSE of the reconstructed object is 69.
Note that signal drop persists in many portions of the image.
Also, as expected, we see that SSQ is unable to correct for
geometric warping in the image. Fig. 4g shows the object
reconstructed using our MBER method, yielding an RMSE
of 23. We note that our method was able to fully recover
the signal in all regions, as well as correct for geometric
warping. The resulting drastic improvement in visual quality
is reflected by a reduction in the RMSE by a factor of 3.
The RMSE may not be the most suitable metric that best
reflects such dramatic improvement in quality. Nevertheless,
we continue to use it hereafter for conciseness. Next, recall
that our method also blindly estimates the SIC terms. Figs.
4h and 4i show the estimated SIC maps. Note the impressive
accuracy of the estimates, when compared to Figs. 4b and 4c.
This demonstrates an additional advantage of our approach:
we can efficiently recover the spatial distribution of the
inhomogeneity coefficients, or field maps. Finally, in order to
gauge the performance of the reconstruction algorithm more
carefully, we implemented a “genie” version of our approach.
We assume that this genie has perfect knowledge of the
SIC distribution, g0(xp, yq) and g1(xp, yq). Fig. 4j shows the
result of our multi-channel reconstruction had the estimation
step been perfect. The impressive quality (RMSE=0.5) of the
resulting object estimate, which was derived from images
such as those shown in Figs. 4d and 4e, implies that
our reconstruction method (13) is capable of completely
correcting the object, even in regions with low SNR and
large amount of warping, without yielding any artifacts. This
is not possible with existing methods in the literature [16].
This also implies that better SIC estimation methods are
worth investigating as they dramatically improve the quality
of the reconstruction. Our completely blind estimation step
is the best we can achieve, in the MMSE sense. However,
the accuracy of the SIC estimates could be improved by
incorporating some prior-knowledge about its distribution.
This is beyond our scope here.

We have illustrated the gain in performance obtained using
our algorithm for a given K and SNR. Next, we vary
the SNR level and repeat the process described above for
various SIC distributions and noise realizations (sampled
from a white Gaussian process). We then report the average
RMSE in the reconstructed object magnitude as a function
of SNR in Fig. 2 for K = 2, 3 and 4. The blue and black
curves represent the performance of the MBER algorithm
and the SSQ method, respectively. The red lines implements
the genie-driven MBER algorithm, which reports the lower
bound on the reconstruction performance. The case of K = 2
is represented with a solid line, K = 3 with a dashed line
and K = 4 with a triangle-marked dashed line. We note the
following: first, the MBER algorithms exhibit a decrease of
RMSE with SNR. This is expected and is a typical trend
in noise-dominated regimes. On the other hand, SSQ recon-
structions are in a blur-dominated regime: the contribution

3748



to the RMSE from the degradation (blur) operator outweighs
that from additive noise, at all SNRs. This explains the
constant performance we observe with this method. Second,
we see that MBER achieves a large reduction in RMSE as
compared to SSQ at all SNRs. For example, for K = 4 and
SNR=35dB, we see that MBER reduces the RMSE by an
impressive factor of 5, as compared to SSQ. Finally, note
the outstanding reconstruction performance of genie-MBER,
as promised by an optimal estimation method. Finally, we
answer the following very important question: what is the
optimal number of measurements K we should make, from
an MMSE perspective, for this specific choice of multi-
acquisition strategy defined in Section III-B? As noted ear-
lier, any multi-acquisition method has a magnitude penalty
term associated with additional acquisitions. So we expect
a performance “roll-over” after a number of measurements.
We answer this in Fig. 3 where we plot RMSE vs K at
SNRs of 40dB (solid line) and 30dB (dashed line) for the
MBER algorithm (blue line) and SSQ method (black line).
Note the log-scale used for the vertical axis. We can see that
the optimal performance of the MBER method is reached
around K = 5 measurements, yielding an improvement in
RMSE by an outstanding factor of 5.2 at 30dB and 7.7 at
40dB as compared to SSQ.
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Fig. 2. The RMSE in the reconstructed object as a function of SNR (dB)
is shown for K = 2, K = 3 and K = 4. Note the tremendous gain
in our suggested MBER (blue line) approach over the SSQ method (black
line). The red line shows the lower bound that can be achieved via perfect
knowledge of the SIC terms.

V. CONCLUSION AND FUTURE WORK

We have presented here a novel joint acquisition-
processing paradigm for reconstructing fMRI data corrupted
by inhomogeneity artifacts. This paradigm explores a novel
solution space for this very important problem. We have
proposed one practical implementation of this paradigm.
Specifically, we proposed a multi-acquisition method which
captures diverse correlated views of the same slice by ap-
plying K z-compensation gradients at K echo times, both
uniformly sampled over a range of interest. We then designed
a corresponding joint estimation-reconstruction algorithm.
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Fig. 3. Performance of MBER (blue) as a function of K for typical SNR
values of 40dB and 30 dB, suggesting an optimal number of 5 acquisitions.
Note the impressive gain over SSQ (black lines).

The estimation method is capable of calculating a map of
the inherent SIC terms which explain the captured data
the most, from an MMSE sense. This estimation step is a
powerful tool which can be used as a robust field mapping
routine. The method does not require any prior knowledge
of the field maps. The reconstruction method uses the in-
formation computed by the estimation routine, along with
the measurements, in order to derive a MMSE estimate of
the object. The reconstruction-estimation steps are iteratively
repeated until a stopping criteria is reached. Our simulation
results show an expected reduction in RMSE by a factor
as high as 7.7, as compared to other established methods
that do not require prior knowledge of the field maps. Even
in cases of severe signal loss, the reconstruction method is
able to combine the diverse measurements and recover the
signal in the affected regions. This is a major advantage
over existing methods which are limited by the SNR level
across the image [16]. Future work includes the immediate
evaluation of the efficiency of our proposed method in-
vivo. Also, we note that the slight modification to the EPI
pulse sequence we presented here is one example of an
acquisition strategy which can generate diverse acquisitions.
Other modified EPI sequences and corresponding diverse
acquisition strategies, albeit with different tradeoffs, will be
explored. Finally, we note that one very important advantage
of our formulation is the ability to jointly optimize the
transformation Tj along with the reconstruction performance.
In fact, one immediate example would be to optimize the
choice of the compensation gradients and echo times so as
to maximize reconstruction performance.
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Fig. 4. (a) Original object density possessing the (b) g0(xp, yq) and
(c) g1(xp, yq) distribution maps. This yields a typical EPI measurement
shown in (d). K = 3 measurements were collected according to the multi-
acquisition protocol described in Section III-B, one example of which is
shown in (e). Note the change in intensity distribution as compared to
(d). The object was reconstructed using (f) the SSQ method (RMSE=69)
and (g) our MBER framework (RMSE=23). The zeroth and first order SIC
maps estimated by MBER are shown in (h) and (i), respectively. Finally, (j)
shows the estimated object had we had perfect knowledge of the SIC terms
(RMSE=0.5).
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