
The Validation of Complete Fourier Direct MR Method for Diffusion
MRI via Biological and Numerical Phantoms
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Abstract—The equations of the Complete Fourier Direct (CFD)
MR model are explicitly derived for diffusion weighted NMR
experiments. The CFD–MR theory is validated by comparing a
biological phantom constructed from nerve bundles and agar gel
with its numerical implementation. The displacement integral
distribution function estimated from the experimental data is
in high agreement with the numerical phantom. CFD–MR’s
ability to estimate accurately and fully spin diffusion properties
demonstrated here, provides the experimental validation of the
theoretical CFD–MR model.

I. INTRODUCTION

Aside from elucidating chemical and anatomical properties
of biological tissue, Nuclear Magnetic Resonance (NMR)
also possesses the ability to report microstructural properties.
The capability of diffusion weighted (DW) NMR to describe
statistically the motion of spins allows inference of the mi-
crostructure they move within.

Historically, Stejskal and Tanner’s analysis [1] of the
pulsed gradient spin echo sequence (see Fig. 1) constitutes
the foundation of the modern diffusion weighted protocols.
Therein, DW–NMR signal is modeled by combining the
Bloch equations with the diffusion partial differential equation
(PDE) with a spatially constant diffusion coefficient. The
mathematical foundation of signal formation is investigated
in the seminal book by Callaghan [2] by blending PDE and
particle method perspectives leading to the derivation of the q–
space model. Basically, the q–space methodology establishes a
general Fourier relationship between NMR signal attenuation
and statistical description of spin motion via a probability
function that depicts the molecular displacement (see [2, Chap.
6]). However, the modeling is based on the narrow–pulse
approximation “which can never be realized exactly in a real
experiment” as indicated in [2, p. 338]. Later in the book
(see [2, Chap. 8]) the methodology is quickly translated to
MRI without providing deeper analysis.

One of the important hindrances encountered in the deriva-
tion of the q–space model is the utilization of the magnitude
of the complex valued free induction decay. Consequently,

This study was supported, in part, by the NIH/NINDS grant Biomarkers
and Pathogenesis of MS (P01-NS059560), and NIH grants NS054194 and
NS047592.
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the properties of Fourier transform always force the q–space
analysis to estimate a symmetric probability function. In
addition, a symmetric construct also rises up in different non–
Fourier approaches inherent to the model infrastructure. For
example, diffusion tensor imaging (DTI) [3], [4] intrinsically
estimates ellipsoids and high angular resolution diffusion-
weighted imaging (HARDI) [5] uses spherical harmonics,
which are all symmetric mathematical objects. The only excep-
tion is perhaps the generalized DTI (GDTI) model presented
in [6] which utilizes skew–symmetric tensors to expand the
Fourier operator.

At a deeper level, existing models are founded on physically
unsupported mathematical assumptions about the molecular
motion in biological tissue, such as the Markovian property.
Unlike in a liquid, tissue microstructure makes it impossible
to assume that the displacement of the spins at a given time
is independent of their past. In tissue, the future motion of
the spins is dependent on their current distance from the
boundaries and the medium they reside in, so the motion
is not Markovian. In fact, it is exactly this dependence that
gives to DW methods the ability to infer microstructure. Using
particle methods rather than PDEs, all of the issues mentioned
above are analyzed, discussed and resolved by the adaptation
of the new model, Complete Fourier Direct (CFD) MRI [7],
[8]. Therein, it is shown that the signal that comes out of the
MRI scanner is the higher dimensional Fourier transform of
(joint) distribution function of the number of spins at an initial
position and their displacement integral values (rather than
the displacements themselves as modeled in the literature).
In a sense, the MR scanner acts as a low–pass filter on the
displacements [9]. In CFD–MRI the displacement integrals
remove the narrow–pulse approximation, and thus, they model
the signal in a real experiment. The signal is treated as a
complex valued function and therefore does not constraint the
distribution function to be symmetric. The CFD–MRI model
relies uniquely on the assumption of continuity of the spin
motion in biological tissue. The Markovian property is not
assumed unlike the diffusion spectrum imaging (DSI) [10].
The distribution function itself is represented ‘as it is’ i.e.
expansions such as spherical harmonics [5], [11] and high
order tensors [6], [11] or transforms such as Funk–Radon [12],
[10] and diffusion orientation transform [13] or composite
sums [14] are not used. The experimental demonstration of
the CFD–MRI mathematical model has been accomplished
in [8] with an ex–vivo baboon brain. That sample’s geometric
properties are fairly well known in different regions of the
brain but there is obviously no exact description.
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Here, the DW–NMR experiments are run for two of their
advantages. First, as shown in Section II the absence of
the imaging gradients facilitates the derivation of the model
compared to DW–MRI and the complications originating from
them [7], [8] disappear from the experiments. Second, the
data set is simpler allowing a reliable interpretation of a
simple biological phantom with known properties for a deeper
understanding of the method.

In light of all of these observations, this manuscript demon-
strates that the CFD–MRI is the unique model that describes
DW–MRI signal i.e. the Fourier Transform of the displace-
ment integral distribution. The validation is provided by the
effectively matching results from the experiments with the
biological phantom and the simulations of the numerical
phantom.

II. THE DERIVATION OF THE CFD SIGNAL MODEL

In the case of particle methods, the NMR signal is mod-
eled to be originating from the sum of the individual spin
magnetizations within the sample. Therefore it is necessary
to derive the magnetization of each spin as a function of
time and the magnetic field gradients. The evolution of the
transverse magnetization of the ith spin is described by a
rotating magnetization vector:

mi(t) = e−ȷ γ Ωi mi(t0). (1)

Here, γ is the gyromagnetic ratio, the transverse magnetization
vector, mi, is written in complex number form with mi(t0)
denoting the initial magnetization tipped to the transverse
plane at the end of the π/2 radio frequency (RF) pulse at
t0,

Ωi(t) =

t∫
t0

G(xi, τ) · xi(τ) dτ (2)

describes the phase as a function of the magnetic field gra-
dients G(x, t) ∈ IR3, and the position of the spin xi ∈ IR3.
Note that the effect of the spin–spin relaxation is neglected
assuming that the pulse sequence time is short compared to
the relaxation time.

By (1) and (2) the time dependent position of each spin
affects the signal. Therefore it must be included in the calcu-
lations in the most general fashion:

xi(t) = xi(t0) + wi(t). (3)

The function wi(t) ∈ IR3 represents the displacement of the
spin from its initial position with wi(t0) = 0, without any
assumptions except continuity since a spin cannot disappear
at a given point and reappear at another.

The calculations are carried out using the variables defined
in Fig. 1 and assuming that the gradient amplifiers are ideal.
With the ideal amplifiers, the shape of the gradient pulses
treated as rectangular and the evolution of the phase can be
described as follows.

In Fig. 1, the π◦ RF pulse between the diffusion gradients,
GD ∈ IR3, provides theoretical sign reversal of the phase. The
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Fig. 1. The Pulsed Gradient Spin–Echo (PGSE) NMR pulse sequence and the
definition of the variables used in the calculations. The sampling starts before
the echo time TE to capture the peak value of the free induction decay which
is attenuated according to the motion sensitizing magnetic field gradients.

only magnetic field gradients are the motion sensitizing ones
and when they are turned on G(xi, t) = GD · xi(t). Therefore,
at t = td4, (2) and (3) lead to

ΩD =

td4∫
td3

GD · xi(τ) dτ −
td2∫

td1

GD · xi(τ) dτ (4)

= GD ·

(td4 − td3)xi(t0) +

td4∫
td3

wi(τ) dτ


−GD ·

(td2 − td1)xi(t0) +

td2∫
td1

wi(τ) dτ


= GD ·

 td4∫
td3

wi(τ) dτ −
td2∫

td1

wi(τ) dτ


+((td4 − td3)− (td2 − td1))GD · xi(t0). (5)

The magnetization is given by:

mi(td4) = e−ȷ γ ΩDmi(t0). (6)

If it is so arranged that the diffusion gradient times are
equal, td4 − td3 = td2 − td1 = δ, then the last expression is
equal to zero in (5). In essence, equal gradient pulse times
remove the dependence of the signal on the initial position of
each spin. The magnetization is explicitly written as:

mi(td4) = e−ȷ γ GD·Wd
i mi(t0) (7)

where

W d
i =

td4∫
td3

wi(τ) dτ −
td2∫

td1

wi(τ) dτ ∈ IR3 (8)

is defined as the displacement integral of the ith spin. This
expression is in fact what is being detected with DW–MR.

At any given time, t, the NMR signal originates from the
total magnetization:

M(t) =
∑
i

mi(t). (9)

Specifically for the PGSE sequence, according to (6)–(8), the
total magnetization at the echo time TE is a function of the
motion sensitizing magnetic field gradient vector, GD,

M(TE , GD) = m0

∑
i

e−ȷ γ GD·Wd
i (10)
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with the initial magnetization, mi(t0) = m0, which becomes
real valued after an appropriate rotation of the transverse
frame if necessary. Equation (10) is just the sum over the
(finite) count of spins. At the echo time TE , M(GD) can be
also calculated in the (continuous) displacement integral space
using the distribution function of the displacement integrals,
P nmr
cfd :

Snmr
cfd

.
= M(GD) =

∫
P nmr
cfd (W d) e−ȷ γ GD·Wd

i dW d, (11)

where m0 is absorbed into P nmr
cfd for ease of notation. In

essence, instead of summing up spin by spin, the signal is
obtained in (11) by integrating over the displacement integral
space.

The expression of (11) is exactly the Fourier transform of
the CFD–NMR distribution function, P nmr

cfd , evaluated at the
three dimensional frequency equal to kD

.
= GD :

Snmr
cfd (kD) = F{P nmr

cfd }(kD). (12)

It should be carefully noted that this simple Fourier rela-
tionship derived for the NMR experiments is not applicable
to the MRI experiments in a straightforward manner. The
detailed analysis for MRI carried out in [9], [7], [8] exposes
the challenges that arise in the case of imaging.

Since the distribution function P nmr
cfd is the count of spins,

it is real valued. This fact is the only information at hand that
guides the estimation of P nmr

cfd from the DW–MR signal, Snmr
cfd ,

in (12). In CFD–MR, there are absolutely no other assumptions
such as symmetry. Moreover, the distribution function is not
the transition probability of a stochastic process, therefore it is
not tied to the associated properties such as being Markovian.

By the Fourier relationship in (12), the real valued P nmr
cfd

dictates that Snmr
cfd must be Hermitian symmetric i.e.

[Snmr
cfd (kD)]

∗
= Snmr

cfd (−kD) (13)

where ∗ denotes the complex conjugation.
As a final remark, note that (8) is the key in clarifying

the narrow–pulse approximation. The narrow–pulse approxi-
mation assumes that the interval of integration is so short that
wi can be treated as a constant during the integration in (8)
and the integral can be approximated by:

td(k+1)∫
tdk

wi(τ) dτ = wi(tdk) δ (14)

resulting in

W d
i ≃ (wi(td(k+2))− wi(tdk)) δ, (15)

which expresses only the displacement and uses δ as a scale
factor for the integration. However, such an approximation
is unrealistic even in the simplest case of diffusion in a
liquid because the sample paths of Brownian motion are
continuous but nowhere differentiable. Therefore the constant
value assumption cannot be validated no matter how small the
time scale is.

III. EXPERIMENTAL AND NUMERICAL SETUP

Although the microstructural obstruction of spin motion in
biological tissue is reflected in the CFD distribution function,
there does not exist an analytical description of P nmr

cfd even in
simple environments. For example, there is no mathematical
proof in the literature that when w is Brownian motion,
(i.e. with normally distributed independent increments) the
distribution function of displacement integrals, W d, is Gaus-
sian. In regard, the numerical simulations are essential in
validating CFD–NMR with biological phantoms of a known
microstructure.

The biological phantom investigated in this work consisted
of two fixed trigeminal nerves from normal male C57BL/6
mouse (The Jackson Laboratory, Bar Harbor, ME, USA)
isolated after fixation. The nerve bundles were placed on
each side of a triangular shaped 2% agarose water gel, which
provided the set of isotropically diffusing spins (see Fig. 2).
The diameter of the nerve bundles varied between 0.5–1mm
along their length. Both bundles were approximately 7mm
long and the agar isosceles straight triangle block had sides
of 3.5mm and thickness equal to 0.5mm.
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Fig. 2. On the left, the initial (shown in black) and final points (red) of the
simulated particles are shown. On the right, the spin–echo MR image of the
biological phantom.

The numerical phantom was implemented to mimic the
biological phantom as two fiber bundles of length correspond-
ing to 7mm and containing fibers (mimicking the axons) of
diameter 1.25µm with closed ends. The bundles were oriented
by a 53◦ angle with respect to each other and contained 1024
parallel fibers each. The numerical agar gel, which was in the
shape of a straight isosceles triangle, had a thickness equal
to 0.5mm and side length equal to 3.5mm. In each tube
13312 particles and in the agar gel 4000 particles were initially
uniformly distributed (see Fig. 2).

The equations (11) and (12) show that DW–NMR provides
the Fourier transform of the CFD distribution function, P nmr

cfd ,
of the spin displacement integrals, W d. Accordingly, the
numerical simulations consisted of

1) calculating the ith spin displacement wi,
2) evaluating numerically the displacement integral (8),
3) repeating the first two steps for all of the spins and
4) finally computing the distribution of the displacement

integral values, P nmr
cfd , in the three dimensional space.

The motion of the particles was simulated using a random
walk with normally distributed increments with zero mean.
The step size, thus the standard deviation of the incre-
ments, was fixed. In the instances when the path crossed the
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boundaries, it was readjusted by an elastic collision. There
were 3000 steps executed for each of the particles with
δsim = 1000 steps and ∆sim = 2000 steps. This resulted in
step time = δ/δsim = ∆/∆sim = 15× 10−6 s. The step size
of the random walk was calculated based on the diffusion
coefficient of the water, s =

√
6Dwater (step time). Free

diffusion coefficient for the nerve bundles 2.025×10−3 mm2/s
and the diffusion coefficient for the water in agar 1.8 ×
10−3 mm2/s were used [15], yielding respectively to the step
sizes 0.427µm (0.64µm in the direction of the fibers) and
0.402µm. In–house Matlab R⃝ (Mathworks, Natick, MA USA)
programs were used for all of the computations and to display
the graphics and maps.
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Fig. 3. The isosurfaces of the distribution function of the displacement
integrals from numerical (top row) results and the experimental results
(bottom row) are shown from two different viewpoints to appreciate the three
dimensional structure. The isotropic components, mostly originating from the
gel, are located near the origin. The angle between the nerve bundles, 53◦,
is apparent in both numerical and experimental results.

The experiments were carried out on a 4.7Tesla MR scan-
ner (Varian NMR Systems, Palo Alto, CA, USA) with a
12 cm inner diameter gradient system, 60Gauss/cm maximum
gradient strength and 0.27ms rise time. The repetition time
TR = 2 s, echo time TE = 60.9ms, diffusion pulse time offset
∆ = 30ms and diffusion pulse duration δ = 15ms were used.
The kD–space was sampled in a uniformly spaced Cartesian
grid in a cube [−45G/cm, 45G/cm]3 with 11×11×11 points,
i.e. ∆GD = 9G/cm sampling intervals at each dimension
resulting in a field of view for the displacement integral space
equal to π/(γ∆GD) = 0.13048µm × s in each direction. The
acquisition time is so arranged that the echo time takes place
in the middle of the read–out period. Six sample points from
each side of the echo time are averaged to obtain the signal.

IV. CONCLUSION

Note that the measurements only report the displacement
integrals which are affected by the relative position of each
spin with respect to the nearby microstructure. As long as
the relative position of the components of the phantom, e.g.
the angle between the nerves, is unchanged, the isosurface
will always have the same shape: two crossing cylinders and
an ellipsoidal component in the middle corresponding to the
isotropic gel sample.

It is clear from Fig. 3 that the angle between the nerves
in the experimental P nmr

cfd isosurface matches the physical
phantom as well as the isotropic component. The distribution
function estimated from the experimental data is in high
agreement with the numerical phantom. CFD–MR’s ability
to estimate accurately and fully spin diffusion properties,
demonstrated here, is unprecedented in the literature. In con-
clusion, this work provides the experimental validation for the
theoretical CFD–MR model.
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