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Abstract— We present an approach to identifying and recon-
structing corrupted regions in a multi-parameter physiological
signal. The method, which uses information in correlated
signals, is specifically designed to preserve clinically significant
aspects of the signals.

We use template matching to jointly segment the multi-
parameter signal, morphological dissimilarity to estimate the
quality of the signal segment, similarity search using features
on a database of templates to find the closest match, and
time-warping to reconstruct the corrupted segment with the
matching template.

In experiments carried out on the MIT-BIH Arrhythmia
Database, a two-parameter database with many clinically sig-
nificant arrhythmias, our method improved the classification
accuracy of the beat type by more than 7 times on a signal
corrupted with white Gaussian noise, and increased the sim-
ilarity to the original signal, as measured by the normalized
residual distance, by more than 2.5 times.

I. INTRODUCTION

A modern Intensive Care Unit (ICU) employs multiple
bedside monitors to track the state of the patients. They allow
continuous monitoring of a patient, and inform medical staff
of changes in the status of the patient. Automated analysis
systems are typically used to analyze these signals in real-
time. These systems critically depend on continuous uninter-
rupted real-time monitoring of the physiological signals such
as electrocardiogram (ECG), arterial blood pressure (ABP),
and photo-plethysmogram (PPG). Unfortunately, these sig-
nals are often severely corrupted by noise, artifacts, and
missing data, which can result in a high incidence of missed
detections and false alarms [1], [2], [3].

In this paper, we address the problem of identifying the
corrupted regions in a multi-parameter signal, which is a
set of multiple time-aligned synchronized correlated signals,
and reconstructing them in a clinically useful way using the
information available in correlated signals.

There are existing methods that exploit the information
available in the correlated channels of a multi-parameter
physiological signal to assist automated medical systems
to produce results that are more reliable. For example,
researchers have tried to fuse information from various ECG
channels, and other signals to robustly estimate the heart rate
[1], [4], [5]. Fusion of multiple signals often requires signal
quality estimation, and researchers have developed several
measures [6]: ECGSQI [4] provides the Signal Quality
Estimates (SQE) of ECG signals, ABPSQI [7], [4] provides
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the SQE of ABP signals, and Hjorth parameters [8] are used
to identify abnormal PPG pulses [5].

There have been studies [9] on the noise reduction on
ECG signals using bandwidth filters to improve the SNR
on the P, Q, and T waves without damaging the QRS
complex [9]. Researchers have also attempted to identify the
morphological features of ECG signals with added noise and
abnormalities [10].

The problem of reconstructing a corrupted multi-parameter
physiological signal was formally posed in the 11th annual
PhysioNet/CinC challenge. Data collected from the MIMIC
II project that contains records of ECG, APB, and PPG was
used for the contest [11].

In our work, we focus on reconstructing the corrupted sig-
nals in clinically useful way, so that the automated systems
that depend on these signals can produce results that are
more reliable. In experiments carried out on the MIT-BIH
Arrhythmia Database, a two-parameter database with many
clinically significant arrhythmias, our method improved the
classification accuracy of the beat type by more than 7
times on a signal corrupted with white Gaussian noise, and
increased the similarity to the original signal, as measured
by the normalized residual distance, by more than 2.5 times.

The organization of this paper is as follows. In Section
II, we present our method and provide the mathematical
framework of our work. In Section III, we discuss the
measures of performance used to evaluate our method, and
present the results of a series of tests in which comparisons
are made using each of the performance measures. Finally,
in Section IV, we discuss our work.

II. METHOD

We consider a multi-parameter signal represented by a
matrix Sn×m, where each column represents a single signal
(e.g., ECG) and each row represents a point in time. There
are m synchronous correlated single parameter signals in S.
Each cell si, j contains one sample. We assume that all the
signals are sampled at the same rate. Our goal is to identify
the corrupted regions, and estimate the actual sample values
on that region.

We first identify the segment boundaries of the multi-
parameter signal in the presence of significant amounts of
transient corruption spanning multiple columns and rows of
the matrix S using the method in [12].

We use a template, a short multi-parameter signal, and
match it with a sliding window of the multi-parameter
signal. The template is regularly updated to reflect the time
evolution of the signal. The initial template is derived from
an archived signal. We continuously extract non-overlapping
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windows from S, and identify the boundary in the window by
finding the prefix of the window that most closely matches
the template. The matching is done using weighted time
warping (WTW) to minimize the weighted morphological
dissimilarity across all the parameters. The warped distance
between two signals gives the morphological dissimilarity.
The weight represents the estimated quality of a single
parameter signal in the multi-parameter signal. The signal
quality estimated from the morphological dissimilarity is
used to find the corrupted regions.

For reconstruction, we use a database of templates. Here, a
template is a segment of the multi-parameter signal that was
chosen from previously seen regions that were believed to
be free of signal corruption. When we come across segments
of high signal quality, we add them to the database; thus, we
learn new morphologies.

The method is based on finding the closest match (tem-
plate) to the corrupted segment from the database. We time-
warp the template to fit the corrupted segment’s interval, and
replace the corrupted segment with the result. The closest
match is found using the dynamic time warping (DTW) [13]
cost. As a preliminary step, we represent the segments by
features. This has the dual advantages of providing a level
of abstraction that preserves clinically relevant information
and speeding up the matching.

Goal : Let S ∈ ℜn×2 be a multi-parameter time series
consisting of two single parameter physiological signals.
The goal is to identify the corrupted segments {Ui}, and
reconstruct the samples in those segments.

Procedure : First, we detrend the signal, and remove
baseline wander using a low pass filter1. Then, using a
template Z`×2 = {Z j ∈ℜ`}2, we segment S into a set of
quasiperiodic units, S[pi,pi.+1), that correspond to single heart-
beats [12]. S[pi,p j) denotes the window in the target sequence
S from time t = pi to t = p j−1. We next run the reconstruc-
tion algorithm starting at the first segment U1, continuously
evaluating the SQE of each segment and reconstructing those
segments with an SQE below the threshold ζlow. We add new
segments to our database if their SQE is above the theshold
ζhigh. This process is iterated over each of the segments. In
the experiments reported later, we set ζlow and ζhigh to 0.5
and 0.6 respectively.

An iteration : We start each iteration with a segment
Ui = S[pi,pi.+1) from S. Using morphological dissimilarity, we
determine whether the segment requires reconstruction.

If the SQE is below a threshold qi < ζlow, we proceed
with the reconstruction process. First, we build the feature
representation Fi of the segment. The signal S is a 2-
parameter signal. Hence, Ui contains two signals, and Fi is
the joint representation of the both. We search the database,
using Fi as the key, and find the top 20 matches. We find
the best match on this set using the DTW distance (ci)
between the corruption-free channel of the segment Ui and
the corresponding channel in the top matches. If the cost
of the match is above a threshold ci > κ, we abort the

1http://www.mit.edu/˜gari/CODE/FILTERS/

TABLE I
SET OF FEATURES THAT ARE USED TO REPRESENT A SEGMENT.

Feature Description
f1− f4 Pre, first-half, second-half, and post R-R intervals

f5 Square root of the total energy
f6 .. f15 The fraction of the energy in the kth section

f16 Kurtosis of the sample values
f17 DTW distance between the signal in the segment, and the

median of the same signal
f18 .. f27 DTW of kth subsequence

f28 Fraction of spectral energy in the QRS complex of the
first signal in the segment

f29 The maximum sample value
f30 The minimum sample value

reconstruction process on the current segment, and continue
to the next segment. Otherwise, we use the best match as
a template for reconstructing the corrupted signal. We time-
warp the channel V a

i from the matching template Vi, with
the corruption-free channel Ua

i from the segment Ui to obtain
the alignment w. Then, we replace the corrupted channel Ub

i
of the current segment Ui with V b

i ∗, which is obtained from
the template Vi by warping V b

i using the alignment w.
If the signal doesn’t need reconstruction, i.e, if the SQE

is above a threshold (qi > ζhigh), we build the feature
representation Fi of the segment, and add the entry (Fi⇒Ui)
to the database. If the length of the database exceeds a given
limit, we evict the least recently used entry.

A. Feature Representation

By representing segments as feature vectors, we both
achieve a level of abstraction that highlights physiologically
significant aspects of the segments and greatly speeds up the
matching process.

In reconstruction, we search the database for the closest
match to the current segment. Since we want to do it in real-
time with a large database of templates, we need to do this
quickly. The use of features decreases the time complexity
of a database lookup from O(n.`2) to O(`2), where n is the
length of the database, and ` is the length of the sample.

Since the segments are usually of different lengths, a
direct comparison function, such as Euclidean distance, is
not suitable. On the other hand, variable length metrics such
as DTW and longest common sub-sequence (LCSS) are typi-
cally of quadratic time complexity. Our feature representation
represents a segment with a vector of fixed length c, hence
two sequences can be compared in O(c) time. The features
also help avoid over-fitting.

Table I lists the set of features in the feature representation.
The first row of the table contains the features related to
R-R intervals. The remaining rows contain features of an
individual segment. We choose this feature set to capture the
morphological attributes and ECG specific characteristics.

B. Reconstruction

We want to reconstruct the corrupted channel Ub
i of the

current segment Ui with the corresponding channel V b
i from

the replacement candidate Vi.
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We first verify the correctness of the match found. We
accept the reconstruction only if the cost of the match ci
is less than a threshold. If the cost ci is greater, we flag the
segment Ui so that automated systems could avoid producing
false alarms in those regions.

Since the length of the current segment Ui, and the length
of the candidate found (template) Vi are typically unequal,
we next time-warp the template with the current segment.
Time-warping is done by finding the optimal alignment
φ(k) between the corruption-free channel of the current
segment Ua

i and the corresponding channel of the template
V a

i (Equations 1-2).

φ(k) = (φ1(k),φ2(k)),1≤ k ≤ K (1)

Cφ(V a
i ,Ua

i ) =
K

∑
k=1

d(V a
i [φ1(k)],Ua

i [φ2(k)]) (2)

C(V a
i ,Ua

i ) = min
φ

Cφ(V a
i ,Ua

i ) (3)

We then replace each sample of the corrupted channel Ub
i [x]

with the time-warped sample V b
i [x∗], which is obtained from

the median of the samples with which it is aligned.

x∗= median(φ2(k)),1≤ k ≤ K and φ1(k) = x (4)

III. EXPERIMENTAL RESULTS

In our experiments, we use the multi-parameter ECG
data from MIT-BIH Arrhythmia Database at Physionet.org
[14]. The database has 48 ECG waveform records; each
contains two channels and is 30 minutes long. The recordings
were selected to include a variety of clinically significant
arrhythmias. This helps us evaluate the robustness of our
method. We use the 39 records from this set that are relatively
free of significant corruption.

We add synthetic corruption to one channel, and then
evaluate our method by quantifying the effectiveness of the
reconstruction on this corrupted data.

We use the following criteria for comparison.
1) Q1: Similarity: We measure the similarity between the

reconstructed data (Sb∗), and the original uncorrupted
data (Sb) by measuring the Euclidean residual distance
r of the reconstructed data.

r =

√
∑

n
k (Sb ∗ [k]−Sb[k])2

n×σ2
S

(5)

We normalize the Euclidean distance to make it
comparable across the records. Residual distance is
commonly used to measure the error in time-series
analysis [15]. In addition, CinC challenge used 1− r2

to evaluate the submissions [11].
2) Q2: Reproducibility: Our goal is to enable the auto-

mated analysis systems produce more reliable results.
Hence, we test our method’s ability to improve the
classification accuracy of a clinically relevant task. We
run a widely used Premature Ventricular Contraction
(PVC) detector2 on the original data (Sb), the artifi-
cially corrupted data (Sb#) and the reconstructed data

2http://www.eplimited.com/software.htm
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Fig. 1. First channel of record 200 from MIT-BIH Arrhythmia database.
The full segment of the channel is corrupted with AWGN at SNR 0dB (a),
and reconstructed using our method (b).

TABLE II
EXPERIMENT 1

Q1 Q2
PVC rSb# rSb∗ ∆Sb# ∆Sb

Median 4 1.01 0.39 0.09 0
Average 47.64 1.01 0.40 0.14 0.02

(Sb∗), and record their agreements. If the PVCs are
detected within 150 ms on two signals, we consider
it an agreement. We quantify the ability to preserve
the clinically relevant events by counting the dis-
agreements. The number of disagreements ndisagreement
is evaluated between the original data (Sb), and the
artificially corrupted data (Sb#), and between the orig-
inal data (Sb), and the reconstructed data (Sb∗). The
disagreement ∆ is finally expressed in terms of the
fraction between the total number of disagreements
ndisagreement, and the total number of beats nbeats in the
region.

∆ = ndisagreement/nbeats (6)

A. Experiment 1: Effectiveness of Reconstruction

We build our database from the first 80% of each record
and corrupt the last 20% of the first channel with the additive
white gaussian noise (AWGN) at 0dB SNR.

Table II summarizes the results. It shows that our method
reduces the residual distance (Q1) by 2.5 times for a signal
corrupted at SNR 0dB. Further, on average, it was able to
improve the classification accuracy (Q2) by more than seven
fold. As an example, Fig. 1(b), shows the reconstruction on
Record 200.
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TABLE III
EXPERIMENT 2

SNR rSb∗ ∆Sb

10 dB 0.410 0.031
0 dB 0.401 0.021

-10 dB 0.402 0.022

TABLE IV
EXPERIMENT 3

rSb∗ ∆Sb

AWGN 0.410 0.031
EM 0.36 0.023
MA 0.19 0.003
BW 0.05 0.001

B. Experiment 2 : Different SNR levels

Again, we build our database from the first 80% of each
record. We corrupt the last 20% of the first channel with
AWGN at SNR levels of 10 dB, 0 dB, and −10 dB.

Table III summarizes the average disagreement (∆), and
the residual distance (r) for the reconstructed signal (Sb∗).
Somewhat surprisingly, we get the worst performance at
the highest signal to noise ratio, and at low SNR levels
the performance does not deteriorate with decreasing signal
quality. The relatively poor performance at an SNR of 10
dB can be attributed to the fact that our algorithm makes a
binary decision to reconstruct the signal or leave it as it is.
This results in poor performance, because when the signal is
only mildly corrupted our algorithm chooses to not attempt
to reconstruct it.

C. Experiment 3: Simulated real-world corruptions

We alter the first 20% of the first channel with the
following types of corruptions at SNR = 10 dB: Additive
White Gaussian Noise (AWGN), Electromagnetic Interfer-
ence (EM), Muscle Artifact (MA), and Baseline Wander
(BW). We use MIT-BIH Noise Stress Test Database3 and
nstdbgen4 to generate the non-Gaussian noise.

Table IV summarizes the average disagreement (∆), and
the residual distance (r) for the reconstructed signal (Sb∗).
We achieve the best performance for Baseline Wander. The
worst performance was observed for AWGN, and EM noise.

IV. DISCUSSION

We presented a method for reconstructing a corrupted
signal in a multi-parameter physiological signal using the
information available in a correlated signal.

Using data from the MIT-BIH Arrhythmia Database, we
conducted a series of experiments to test the effectiveness
of our method. Our evaluation criteria were normalized
residual distance and classification accuracy. For AWGN, our
method improved the classification accuracy by more than 7
times, and increased the similarity to the original signal, as
measured by the normalized residual distance by 2.5 times.
Our algorithm is faster than real-time when it is run on
a standard computer. We use feature vectors to achieve a
running time that is independent of the size of the database.

Our method is useful only when the signals are time-
aligned synchronized correlated and quasi-periodic. Further,
we also require that at each point in time at least one of the
correlated signals to be free of corruption.

3http://www.physionet.org/physiobank/database/nstdb
4http://www.physionet.org/physiotools/wag/nst-1.htm

While we have tested our method only on ECG data, we
believe that it should be useful in other multi-signal settings
in which one or more signals are corrupted and at least one
of the correlated signals is transiently uncorrupted [16], [17].
Going forward, we plan to test our algorithm on a database
containing simultaneous recordings of ECG, ABP, PPG, and
CVP.
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