
  

  

Abstract— In automated ECG monitoring, QRS detection 
performance is dependent on noise measurements on 
individual leads. A new signal quality measurement based on 
stability analysis of QRS complex features has been 
developed to assess individual ECG lead quality. The new 
method was evaluated on the records of the MIT-BIH 
arrhythmia and NST databases.  Results showed that the 
new signal quality measurement can be used to accurately 
assess ECG signal quality and can be easily incorporated 
into an existing multi-lead QRS detection algorithm for 
performance improvement.  

 

I. INTRODUCTION  
 

Poor quality electrocardiograms (ECG) present 
challenges to accurate interpretation in patient 
monitoring. Clinical experience with current ECG-based 
monitoring has shown that the best performance can be 
achieved if the input is free from noise, and noise has 
been the primary source of performance degradation for 
ECG algorithms. Noise appearing on the ECG may be due 
to physiologic or non-physiologic sources. The most 
common noise is caused by skeletal muscle 
contraction/tremor, electrical interference and electrode 
movements. Failure to recognize and minimize artifact 
during monitoring may result in an incorrect detection of 
heart rate and arrhythmias which leads to false alarms and 
unnecessary clinician intervention. 

Recently, the use of multiple ECG leads for real-time 
arrhythmia detection has become popular in patient 
monitoring. The key component in multi-lead algorithms 
is the determination of the lead quality of each processed 
ECG lead. The estimation of noise presence in ECG, on 
the other hand, will allow the ECG algorithm to either 
reject part or the entire ECG, or proceed for further 
analysis based on the magnitude of noise present in the 
ECG.  There are a few techniques already implemented in 
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patient monitoring to detect individual types of noise 
(mostly for high frequency noise, baseline wander, and 
low frequency noise).  

Currently most methods for the detection and/or 
quantification of composite noise in ECG require accurate 
QRS detection for individual leads or one combined lead. 
The classic method to quantify signal quality of each lead 
is to represent ECG signal (P, QRS, T) morphology on 
template (aligned averaged signal) or modeling (KLT 
functions, wavelets, etc), and define the difference 
between the signal and the representation as the 
underlying residual noise in the ECG [1-3]. There are also 
some variations in noise definition. A mismatch 
histogram [4], based on the area difference between 
successive detected QRS complexes, and a index as T-P 
interval average power divided by the QRS average 
power [5] are proposed to be the noise metric. 

The goal of this paper is to present a novel method that 
measures the quality for a given single lead by analyzing 
the stability of QRS complexes dynamically over a time 
window that is responsive to both non-physiological and 
physiological noise.  

  II. METHOD 
 

Fig. 1 depicts the algorithm flow diagram of the 
stability analysis. The classical methods of determining 
the noise level of a given lead usually focus on the 
morphology features measurement of each individual 
QRS complex. The method described here focuses on the 
pattern similarity of QRS features for a group of QRS 
complexes. The key in this quantitative assessment of 
noise level is to check the pattern similarity of QRS 
complexes over a fixed time window beat by beat 
(complex by complex). If the pattern similarity level is 
high over a time period, the ECG signal quality is high. 
On the other hand, the low pattern similarity indicates 
noisy ECG signal.  

 
Step 1: QRS Feature Representatives Selection. 

As shown in Fig. 2, some features are used to delineate a 
QRS complex, 
    (a)  h: The height of QRS  
    (b) w: The width of QRS 
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    (c) ∆QRS: The triangle area of QRS 
(d) ∆SS’T: The area of ST-segment  
(e) d: Peak direction of QRS peak 
(f) RR: RR interval 
 

  
Fig. 2:  Features for QRS complex 
 
For simplicity, all the following description and results 

are based on two feature selection: the triangle area of 
∆QRS (1) and the peak direction of the QRS complex. 

∆QRS =  wh ⋅⋅
2
1

               (1) 

Where h is the height and w is the width of QRS complex. 

Step 2: Determine the size N of continuous QRS 
complexes in the defined group, average each feature 
representative of all detected QRS complexes in the 
group. For instance, I avg is the averaged feature 

representation of ∆QRS of all detected beats calculated as 

(2). 
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As shown in Fig. 3, the QRS complexes group is 
categorized into two subgroups G1 and G2: 

 ,1GQRSi
∈∀  If ∆QRS ≥ I avg  

 ,2GQRS j
∈∀ If ∆QRS < I avg .  

Where 0 ≤ i, j ≤ N. N is the size of the group. 

N = 8

First in Fist out

Out In

G1

G1

G2

Iavg

SubstituteG

 
 
Fig. 3:  QRS categorization and substitution 
 
As shown in (3), the beats in the subgroup are replaced 

by the incoming beat with same characteristics of peak 
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Fig. 1:  Stability Analysis Algorithm Flow Diagram 
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direction and QRS triangle area.   
 

 
                                                                                  (3) 

Where )(InQRS  is the latest detected QRS complex, 

)(iQRS is the existing QRS complex in the group. 

Step 3: Recalculate the averaged feature representative 

I avg′  of the new subgroups in (4). 
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Where N1 is the number of QRS in G1 that are 
replaced by )(inQRS   and N2 is the size of G2. )(inh is 

the height and )(Inw is the width of  )(InQRS . hi  is 

the height and wi is the width for 2GQRSi
∈ . Where 

0 ≤ i ≤ N2 and N1 + N2 = N. 
 
The averaged feature representative I avg is normalized 

for each QRS complex (or beat) in (5). 
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Step 4: Analyze and report signal noise level. 

As shown in Fig. 4, if the signal is clean the QRS 
complex pattern is stable for the group (at least for a short 
period time window). The distribution range of rN

is 
close to zero. A high weight for clean signal is assigned to 
the processed lead for this time period. If the signal is not 
stable, the QRS complex pattern is unstable, and 
distribution range of rN is far away from zero. A weight 
for the low quality of signal is assigned to the processed 
lead for this time period. 

  
Fig. 4  Distribution range of rN for clean signal. 

III. RESULTS 
 

In this section, three examples are provided to 
demonstrate the ability of this new signal analysis 
technique to assess signal quality and its application in 
multi-lead QRS detection. The test signals used are from 
the two-channel MIT-BIH, AHA and NST (The Noise 
Stress Test Database) databases. The tests are done 
against different clinical situations e.g. normal, noise and 
arrhythmia.   

Let rN = 100 (or -100) if rN ≥ 100 (or ≤ -100). In 

each distribution plot ofrN , the vertical axis represents 

the percentage of rN  (range from -100 to 100%), and the 

horizontal axis is the scaled time frame. 
 

Fig. 5 illustrates 1 minute (between 02:20 and 03:20) of 
2 channels of ECG waveform (partially raw signal in 
upper plot and related rN  distribution in lower plots) in 

AHA Record 4209. For this time period, despite the 
presence of ventricular bigeminy the algorithm shows that 
both leads have good signal quality most of time by 
giving the low radios ofrN  for both leads.  This shows 

that the algorithm has good performance under the regular 
arrhythmia events. 
 

Fig. 6 illustrates the overall performance of algorithm 
for 1 minute and 15 seconds (between 08:15 and 09:35) 
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Fig. 5: 1 minute raw signal and algorithm results of lead 
1 and lead 2 in AHA Record 4209. 

3770



  

MIT BIH Record 203 (raw signal in upper plot and 
related rN  distribution in the second and third plots). 

For this time period, the presence of artifact waves caused 

the noise level in lead 2 to be significantly higher than 
lead 1, illustrated by measuring the distribution range of 

rN for both leads. The lead 1 is selected for arrhythmia 

analysis (lead 2 is disabled). The third plot shows the 
results for QRS complexes position identification.   

 
Fig. 7 illustrates the overall performance of algorithm 

for 1 minute (between 13:10 and 14:10) NST Record 
119e06 (raw signal in upper plot and related rN  

distribution in the second and third plots). For this time 
period, the presence of artifact waves caused the noise 
level in lead 2 to be significantly higher than lead 1, 
illustrated by measuring the distribution range of rN for 

both leads. The lead 2 is selected for arrhythmia analysis 
(lead 1 is disabled). The third plot shows the results for 
QRS complexes position identification. 

  

IV. CONCLUSION 
 
A new signal quality measure that is responsive to 
composite noise has been developed for ECG lead quality 
assessment during QRS detection. The usefulness of this 
technique in qualifying the signal quality has been 
demonstrated. These results showed the new signal 
quality measure can be used to accurately assess the ECG 
signal quality and can be easily incorporated into an 
existing multi-lead QRS detection algorithm for 
performance improvement.  
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Fig. 7: 1 minute raw signal and algorithm results of lead 
1 and lead 2 in NST Record 119e06. 
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Fig. 6: 1 minute and 15 seconds’ raw signal and 
algorithm results of lead 1 and lead 2 in MIT BIH 
Record 203. 
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