
  

  

Abstract— Interbreath interval (IBI), the time interval 
between breaths, and its variations in time around the mean, 
the IBI variability, are important measures associated with 
irregularity of breathing. The IBI histogram generally follows a 
power law distribution with its characterizing parameters 
changing with maturation. To assess the dynamics of breathing 
we propose a point process model of IBI with a lognormal 
parametric structure to appropriately represent the stochastic 
nature of the IBI distribution. We estimate the time varying 
evolution of the characterizing parameters to represent the 
dynamic nature of breathing, and thereby provide a time-
varying measure of irregularity in breathing. The reliability of 
the model to capture the data is assessed using Kolmogorov-
Smirnov (KS) and independence tests. Our results validate the 
novel approach in the assessment of the irregularity of 
breathing by analyzing respiratory recordings from newborn 
rats and preterm infants. 

I. INTRODUCTION 
nfantswith post-conceptional age of less than 36 weeks 
commonly have irregular breathing patterns with periodic 

and sporadic pauses in breathing (apnea)[1].  The time 
interval between breaths, called the interbreath interval 
(IBI), is an important measure for understanding the 
irregularity of the breathing patterns. Standard statistical 
measures such as mean and variance of the IBI have been 
employed to quantify the variability of breathing in preterm 
infants.  

However, preterm infant breathing patterns are highly 
non-stationary, with rapid changes in measures of breathing 
and there is no model available that can provide information 
about such dynamic changes. To understand the instability 
of breathing in infants, we propose a point process model of 
IBI that can describe pathological instabilities of breathing 
and is able to track the dynamics in real time.  

Our model provides the precise probabilistic description 
of the IBI at any desired time resolution. To characterize the 
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stochastic nature of IBI, we assume a lognormal distribution 
for the distribution of IBI. IBI is derived from the time 
interval between successive peaks of the respiratory signal. 
We estimate the time varying parameters of the point 
process model by a maximum local likelihood approach, and 
assess the model goodness-of-fit by a Kolmogorov-Smirnov 
(KS) test derived from a time rescaling theorem [2]. We 
illustrate our approach using data from newborn rats as well 
as preterm infant recordings with apnea.   

II. METHODS 

A. Neurophysiology of Breathing  
Respiratory rhythm in mammals is governed by neural 

circuits within the brainstem that signal the timing and depth 
of each breath. Continuous ventilation results from recurrent 
bursts of inspiratory neuronal activity that controls the 
diaphragm via discrete phrenic motor neuron activations [3].  

A basic assumption of our point process model for 
breathing is that the peak of inspiration, marked by the peak 
of inhalation recorded non-invasively, is a discrete event that 
marks the timing of neuronal inspiratory bursts.  A second 
assumption is that IBI dynamics are governed by continuous 
processes under the regulation of multiple feedbacks and 
feed forward loops impinging upon the respiratory oscillator.   

B. A Probability Model of Interbreath Interval (IBI) 
It has been shown that the IBI of the infant follows a 

power law distribution, and the characterizing parameters of 
the distribution are found to be sensitive to age (maturation) 
[4]. In an observation interval ሺ0, ܶሿ, we consider the times 
where local maxima of the respiratory cycle occur (end of 
inspiration and onset of expiration) as 0 ൏ ଵݑ ൏ ଶݑ ൏, … … … , ൏ ௞ݑ ൏, … … … , ൏ ௄ݑ ൑ ܶ. Then, we assume that at 
any given respiratory event ݑ௞, the waiting time until the 
next event obeys a history dependent lognormal probability 
density ݂ሺܪ|ݐ௞,  ሻ asߠ

 ݂ሺܪ|ݐ௞, ሻߠ ൌ ቂ ଵଶగఙమሺ௧ି௨ೖሻమቃభమ ݌ݔ݁ ൜െ ଵଶ ൫௟௡ሺ௧ି௨ೖሻିఓሺுೖ,ఏሻ൯మఙమ ൠ    ሺ1ሻ    
 
where t is any time, ݐ ൐  ௞ݑ ௞ is the history of IBI up toܪ , ௞ݑ
represented as ܪ௞ ൌ ൛ݑ௞, ,௞ݓ ,௞ିଵݓ … . , ௞ݓ ௞ି௣ାଵൟ withݓ ൌ ௞ݑ െ  is a vector of model ߠ ௞ିଵis the kth IBI andݑ
parameters. The instantaneous mean is modeled as a p-order 
autoregressive process as  ߤሺܪ௞, ሻߠ ൌ ௢ߠ ൅ ∑ ௞ି௝ାଵ௣௝ୀଵݓ௝ߠ . 
The probability density in equation (1) defines the IBI 
distribution with ߤ and ߪ as the characterizing parameters. 
At each instant of time t, to estimate ߠ and  ߪ, we employed 
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local maximum-likelihood approach [5]. 

C. Local Maximum Likelihood Approach 
To calculate the local maximum likelihood estimate of ߠ 

and ߪ, we defined the local joint probability density of ݑ௧ି௟:  ௧ l being the length of the local likelihood observationݑ
interval. If we observe ݊௧ peaks within this interval as ݑଵ ൏ ଶݑ ൏, … … … , ൏ ௡೟ݑ ൑  are time ߪ as well as ߠ and if ݐ
varying, then at time t, we estimate the maximum likelihood 
estimate of ߠ෠௧ and ߪො௧ to be the estimate of ߠ and ߪ in the 
interval l. Considering the right censoring, the local log 
likelihood is obtained as 

 log ݂ሺݑ௧ି௟:௧|ߠ௧ሻ ൌ ෍ ݐሺݓ െ ௜ሻ௡೟ݑ
௜ୀଶ log ݂ ൫ݑ௜ െ ,௨೔షభܪ௜ିଵหݑ ௧൯ߠ
൅ ݐ൫ݓ െ ݃݋௡೟൯݈ݑ න ݂ ቀߴቚܪ௨೙೟ , ௧ቁஶߠ

௧ି௨೙೟  ሺ2ሻ   ߴ݀

where ݓሺݐሻ  is a weighting function to account for faster 
updates to local likelihood estimation and we selected as ݓሺݐሻ ൌ ݁ିఈሺ௧ି௨ሻ with ߙ as the weighting time constant that 
assigns the influence of a previous observation on the local 
likelihood at time t. Since ߠ can be estimated in continuous 
time, we can obtain the instantaneous estimate of  ߤ, the 
mean, using the autoregressive representation. Similarly the 
local likelihood estimate provides the instantaneous estimate 
of variance ߪଶ.  

D. Model Goodness-of-Fit  
The IBI probability model along with the local maximum 

likelihood method provides an approach for estimating the 
instantaneous mean and instantaneous variance of the IBI. 
These measures provide information about the changes in 
the characteristics of the distribution, possibly due to 
irregularity of breathing. However, it is also essential to 
evaluate how well the model represents the IBI. To obtain a 
goodness-of-fit measure we compute the time-rescaled IBI 
defined as ߬௞ ൌ ׬ ,௧ܪหݐ൫ߣ ௨ೖ௨ೖషభݐ෠௧൯݀ߠ              (3) 

 
where the ݑ௞ represent the breathing events observed in 
(0,T) and ߣ൫ݐหܪ௧,  ෠௧൯ is the conditional intensity functionߠ
defined as 
,௧ܪหݐ൫ߣ  ෠௧൯ߠ ൌ ݂൫ݐหܪ௧, ,෠௧ߠ ො௧൯ߪ ൥1 െ න ݂൫ߴหܪణ, ,෠ణߠ ොణ൯௧ߪ

௨೙೟ ൩ିଵߴ݀ ሺ4ሻ 

The conditional intensity is the history dependent rate 
function for a point process that generalizes the rate function 
for a Poisson process. The ߬௞ values are independent, 
exponential random variables with a unit rate. With a 
transformation ݖ௞ ൌ 1 െ exp ሺെ߬௞ሻ, the ݖ௞ values become 
independent, uniform random variables on the interval (0,1]. 
Thus we can employ a KS test to assess the agreement 
between the transformed ݖ௞ values and a uniform probability 
density. If there is close agreement between the point 

process model and the IBI data series, then the transformed ݖ௞values plotted against the uniform density will have close 
agreement if the plot is closer to the 45 degrees diagonal (KS 
plot) The KS distance measures the largest distance between 
the cumulative distribution function of the IBI transformed 
in the interval (0,1] and the cumulative distribution function 
of a uniform distribution on (0,1]. The smaller the KS 
distance, the better the model in terms of goodness-of-fit. 
  

E. Experimental  Data 
Animal Data: Neonatal rats exhibit respiratory patterns 

and chemo-responses analogous to preterm infants, 
including sporadic apneas with bradycardia and hypoxemia, 
as well as periodically occurring apnea episodes. One to two 
day old rats were placed in a sealed chamber and breathed 
through a face mask and pneumotachogram, allowing 
recordings of respiratory airflow through the mask. 
Measurement of pressure within the plethysmographically 
sealed chamber was an index of respiratory effort. These 
previously published studies have documented the 
occurrence of unstable breathing patterns of central origin 
[6]. 

Human Data: The preterm infant data considered in our 
analysis is from a study to understand the instability of 
breathing [7]. The study was conducted at the Newborn 
Intensive Care Unit, University of Massachusetts Memorial 
Healthcare and approved by the Committee for the 
Protection of Human Subjects in Research at the University 
of Massachusetts Medical School. The infants have a 
gestational age <36 wks and post-conceptional age (PCA) 
>30 wks at the time of study. These infants were 
spontaneously breathing room air or receiving supplemental 
oxygen through nasal cannulae at a fixed flow rate.  
Respiratory signal was recorded using respiratory inductance 
plethysmography of abdominal movements during 
spontaneous breathing (Somnostar PT; Viasys Healthcare, 
Yorbalinda, CA) at a sampling rate of 100 Hz. 

III. RESULTS 

A. Analysis of Simulated IBI with Time Varying 
Parameters 
We first tested the model using simulated data sets. We 

simulated data series from a lognormal distribution with 
specific mean and variance (ߪଶ ) values. The instantaneous 
variation of the parameters is calculated along with the 
goodness-of-fit of the model using the point process model. 
It has been found that for a fixed mean and variance values, 
the model accurately estimates the mean as well as variance 
and also provides better fit in terms of KS plots.  

To understand the ability of the model to capture the time 
varying parameters, we simulated the data in which the 
variance was kept at a fixed value for a specific duration of 
time and then randomly varied for a fixed time interval prior 
to setting to the initial variance value. The mean value was 
kept at a constant level. We found that the model accurately 
captured the time varying nature of the variance and also 
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simulated data with time varying variance d
500 to 800 along with the estimated varianc
1.   

Fig 1. (a) Simulated data with mean ߤ ൌ 1 and 
obtained from a lognormal distribution. The 
randomly during the interval 500 to 800. (b) 
variance estimated by the point process model o
local likelihood window ݈ ൌ 100 and weightߙ ൌ 0.01 along with a time resolution ܵ ൌ 0.01.
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