
  

  

Abstract—This study was undertaken to investigate spectral 
features derived from EEG signals for measuring cognitive 
load.  Measurements of this kind have important commercial 
and clinical applications for optimizing the performance of 
users working under high mental load conditions, or as 
cognitive tests.  Based on EEG recordings for a reading task in 
which three different levels of cognitive load were induced, it is 
shown that a set of spectral features - the spectral entropy, 
weighted mean frequency and its bandwidth, and spectral edge 
frequency - are all able to discriminate the three load levels 
effectively. An interesting result is that spectral entropy, which 
reflects the distribution of spectral energy rather than its 
magnitude, provides very good discrimination between 
cognitive load levels. We also report those EEG channels for 
which statistical significance between load levels was achieved. 
The effect of frequency bands on the spectral features is also 
investigated here. The results indicate that the choice of 
optimal frequency band can be dependent on the spectral 
feature extracted. 

I. INTRODUCTION 
OGNITIVE load is the amount of task demand applied on 
working memory when performing a mental task [1]. It 
is quite well-known that working memory is limited in 

capacity and time when holding or processing information 
[1]. Therefore, when a task becomes more difficult, the 
accessibility of working memory reduces and cognitive load 
increases. This may lead to decreased performance or even 
failed task completion, which is undesirable in any 
circumstance, but particularly in critical decision-making 
fields, such as air traffic control, fire command and military 
operations or when designing adaptive human computer 
interfaces. Thus, measuring the cognitive load experienced is 
a critical need [1].   

Different techniques are available for measuring cognitive 
load; among them electroencephalography (EEG)-based 
methods are the most suitable for continuous and on-line 
assessment of cognitive load at all levels [2]. This is due to 
the high sensitivity of EEG to variations between different 
cognitive states, and task difficulty in one hand, and the easy 
usage of the EEG device and being less costly and bulky on 
the other hand [2]. Specially, the usage of EEG has become 
more feasible for real-world applications recently with the 
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availability of wireless EEG systems [3].  
Finding features that are good discriminators of different 

workloads is an important key to successfully measure and 
classify the cognitive load levels.  Previously, a range of 
spectral features have been deployed for this purpose using 
EEG signals, indicating that the spectral features 
discriminate cognitive load best. This includes the use of 
power spectral density (PSD), the power and maximum\log 
power spectra [4]-[8]. But to date, other spectral features that 
could provide more information on the varying cognitive 
load characteristics have not been investigated.  

This study is a continuation of the authors’ previous study 
in which other features were employed to characterize 
varying behavior of cognitive load, and which identified a 
few frontal EEG channels as the most effective channels in 
separation of the three induced loads [9]. 

In this study, we aim to examine the usefulness of some 
spectral features (i.e. spectral entropy, weighted mean 
frequency and its bandwidth, and spectral edge frequency), 
and to determine in more detail the frequency band in which 
the maximum discrimination among the three load levels is 
yielded. These spectral features have been employed in past 
EEG medical/ brain computer interface (BCI) analysis [10]-
[12], but not in the cognitive load context.  For the various 
spectral features, the related EEG channels for which 
reliable information may be extracted for an EEG-based 
cognitive load classification system is also investigated.  

II. MATERIAL 

A. Experiment 
EEG signals were acquired from five healthy male 

participants; postgraduate students aged between 24-30 
years. In the experiment, the participants were asked to read 
text silently, which was displayed and controlled on a laptop 
PC with a viewing distance of 70 cm to them. The reading 
task was chosen to be semantically neutral and 
comprehension-independent to avoid any expertise effect, 
and assumed the reading ability of all participants to be 
relatively similar. To rate the task readability/complexity 
and ensure it induced three different difficulty loads, the 
Lexile framework for reading [13] was used. The test 
determined the different difficulty loads as 1020 for low 
load, 1090 for medium load, and 1150 for high load.  

The task was split into three levels; participants were 
asked to read the displayed pages silently and pick up three 
(low), three and four (medium) or three, four and five (high) 
letter words by pressing the mouse left/middle/right button. 
In the baseline condition, conducted after the experiment, 
the participants were asked to sit relaxed and keep their eyes 
open. To minimize any muscle movement artifact (EMG), 
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the participants were asked to sit still and their hand was 
placed fixed in a certain position, where they could still 
make finger movements for clicking the mouse buttons in 
response to the word stimuli. The participants were also 
required to refrain from blinking as much as possible during 
the recording to avoid ocular artifacts (EOG). 

B. EEG Recording 
The data used for this study consists of multi-channel 

EEG recordings obtained from the five consenting 
participants.  The data were acquired using an Active Two 
system [14], at the ATP Laboratory of National ICT 
Australia in Sydney. The experiment was conducted under 
controlled conditions in an electrically isolated lab, with a 
minimum distance of 5 meters from power sources to the 
experiment desk, and under natural illumination.  Each 
recording contained 32 EEG channels, according to the 
international 10 - 20 system. The data were recorded in a 
digital form, at a 256=sf Hz sampling rate.  This dataset 
was also used in the authors’ previous study [9]. 

III. METHOD 

A. EEG Preprocessing and Segmentation 
A notch filter of 50 Hz was initially applied to the raw 

EEG signals to remove the electrical mains contamination.  
The signals were then passed through a band-pass filter with 
a pass-band of 0.1-100 Hz. Visual inspection of the recorded 
signals showed very low ocular artifact occurrences. 
Therefore, no artifact removal was conducted here. The 
acquired EEG signals were first segmented using 5s non-
overlapping rectangular windows.  Each segment is denoted 
herein as x[n] and contains 1280=N  samples. 

B. Spectral Feature Extraction 
Five spectral features were extracted from each segment 

of the EEG signals.  They are presented as follows:  
 
Spectral Entropy (SpEn): Spectral entropy is a measure 

of the distribution of normalized spectral energies, in this 
case within a frequency band. It is given by: 
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where )(xPf  is an estimate of the probability density 
function (PDF) of the EEG segment amplitude spectrum. 
The PDF is calculated by normalizing the PSD estimate with 
respect to the total spectral power in each sub-band.  fN is 
the number of frequency bins in the PSD estimate.  

According to the above equation, the spectral entropy 
attains its peak when all the frequency bins contain the same 
power. One reason for investigating this feature is that it is 
essentially independent of the sub-band energy, which has 
been shown to perform well in previous work [9].  

For illustration purposes, the PSDs of the EEG signals 
acquired from one participant, while the three cognitive 

 
Fig.1. Extracted PSDs from the segmented EEG for participant 1 channel 
F8, recorded during induced high, medium, and low load levels.  
 
loads induced are shown Fig. 1. As the cognitive load level 
increases, the signal power is concentrated in a smaller 
frequency band. Therefore, the spectral entropy decreases. 
The  extracted entropy values in the delta sub-band shown in 
Fig. 1 for low, medium, and high loads are 710*6171.0 − , 

710*5795.0 − , and 710*5343.0 − , respectively. This feature 
has been used for neonatal seizure detection previously [10]. 
 

Sub-band Energy (Enrg): The second spectral feature 
used here is the energy of the EEG segment in the delta sub-
band (0-4 Hz) [9]. The choice of the sub-band was based on 
the fact that most of the energy of x[n] resides below 4 Hz, 
which is also seen in Fig.1.  In fact, energy is the integral of 
the signal spectral amplitudes, which is proportional to the 
signal power. It is an effective feature for EEG signal spatial 
classification in BCI applications [12]. 

 
Intensity Weighted Mean Frequency (IwMf): This 

feature measures a weighted mean of the frequencies present 
in the PSD estimate for each EEG segment [10]:   
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where ip  is the estimated spectral power in frequency bin of 
i , sf  the sampling frequency, fN  the total number of 

frequency bins, and. fs Nfdf /= . 
 

Intensity Weighted Bandwidth (IwBw): The associated 
bandwidth of the IwMf feature can be calculated by [10]: 
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Spectral Edge Frequency (EdFr): This feature is defined 

as the frequency below which 90% of the signal power 
resides.  This measure has been used previously for 
quantifying a pathological state (i.e. the depth of anesthesia 
in adults or white matter injury in neonates) [11]. 
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C. Analysis 
Since the features of interest are spectral, we initially 

investigated the spectral components of the recorded EEG 
signals. It appears that 90% of the energy of the spectral 
components resides in the 0-3.8 Hz region, computed by the 
extracted EdFr. This is also confirmed visually by the PSD 
shown Fig. 1. Clearly, the delta sub-band practically 
provides the most separation between the three load levels 
induced in the experiment. Therefore, the performance of all 
features namely; SpEn, Enrg, IwMf, IwBw, and EdFr were 
examined in the delta sub-band and compared for all the 32 
EEG channels for all participants.  We initially calculated 
the median of all the features for each EEG channel 
recorded, and then compared the effectiveness of each 
feature using a Kruskal-Wallis test. 

IV. RESULTS AND DISCUSSION 

A. Feature Comparison 
TABLE I lists the EEG channels in which the features’ 

medians calculated across all participants have shown 
consistent trends. It displays that the SpEn and Enrg exhibit 
a consistent decreasing trend as load level increases, in 
selected channels. However, the IwMf, IwBw, and EdFr 
exhibit an increasing trend as load level increases. 

In order to examine how effective the extracted features 
are in the different load levels separation from the EEG 
channels, we used the Kruskal-Wallis test.  The benefits of 
this test are: it examines more than 2 groups, is a non-
parametric method, and is not affected by variations in a 
small portion of the data [15].The largest calculated p-values 
(indicating the worst case scenario) across the selected 
channels for each feature for all participants are displayed in 
TABLE II. As the p-values suggest, the Enrg feature shows 
a great statistical significance in differentiating the cognitive 
load levels in all the EEG channels.  It is followed by the 
SpEn feature, with the second lowest set of p-values. As 
seen, most of the selected channels in TABLE I are 
confirmed in TABLE II, statistically. 

 
TABLE I 

Variations of the extracted features’ medians from the EEG channels in 
the delta sub-band, indicating the channels that follow a consistent trend 

associated with the 3 load levels induced, across all participants. 
 

Feature EEG channels Trend with 
increasing load 

SpEn Fp1, AF3, F7, CP5,P7,Pz, P8, CP6,CP2, 
T8, F4, F8, AF4 decreasing 

Enrg Fp1, AF3, F7, T7, CP3, P7, Pz, P8, CP6, 
CP2, T8, F4, F8, AF4 decreasing 

IwMf F7,  FC5, T7, C3, P7, P3, Pz, P8, CP2, 
FC6, FC2, Fp2, Fz increasing 

IwBw Fp1, AF3, F7,  T7, C3, CP5, P3, Pz, PO3, 
P4, CP2, FC6, FC2, F4, Fp2, Fz increasing 

EdFr Fp1, AF3, F7, P3, Pz, CP2, Fp2, Fz increasing 
 
 
 
 

TABLE II. 
The EEG channels with a p-values<0.01 for allparticipants in the delta 

sub-band. The biggest calculated p-values display the worst case scenario. 

 
For illustration purposes, this significant statistical 

difference among the three load levels for the SpEn is also 
displayed in Fig. 2 for channel F4. As observed, the values 
of the SpEn feature are different for three load levels. Also, 
there is no overlap between the three box plots indicating 
complete separation among the three load levels. 

B. Sub-divisions of the Delta Band 
Following our investigation of the delta frequency sub-

band; we divided this sub-band into finer frequency sub- 
bands.  Therefore, the delta sub-band (0-4Hz) was split into 
three sub-bands of 0δ  (0-1 Hz), 1δ  (1-2 Hz), and 2δ  (2-4 
Hz) using wavelet decomposition. The feature medians were 
recomputed for the 0δ , 1δ , and 2δ  sub-bands. It was 

observed that for the SpEn, and Enrg 0δ , and 1δ sub-bands 
provided the same results as TABLE I, showing that the 
lower sub-bands seem to underlie most of the load level 
variations.  For the IwMf, IwBw, and EdFr the medians in 
the finer sub-bands did not provide any significant results, 
indicating the load level information extracted by these 
features is distributed all over the delta sub-band. This 
suggests that the performances of the extracted spectral 
features are highly dependent on the frequencysub-divisions. 

 
Fig. 2 Boxplot of the SpEn feature extracted from the segmented EEG 

data across all participants for channel F4. On each box, the red mark is the 
median; the edges of the box are the 25th and the 75th percentiles. Low 
level is denoted by 1, medium by 2, and high by 3 here. 
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C. Classification 
To measure the classification accuracy of the extracted 

features, we used a multi-class support vector machine 
(SVM) as a classifier. The spectral features were used with 
three SVMs in a pair wise strategy. One SVM was used to 
separate low from medium, one used to separate low from 
high, and the third one was deployed to separate medium 
from high. The SVM used a linear kernel, and compared the 
results of the three load level classification for all 32 
channels, applied on a per-subject basis.  80% of   the data 
(for each task level for each participant) were used for 
training and the remaining 20% for testing.  We first 
examined the performance of each feature individually, but it 
yielded low classification accuracy. Therefore, we combined 
all the features into the classifier which resulted in a superior 
performance (higher accuracy rate). This can suggest that 
each feature captures different information/characteristics of 
the signal. In other words, they complement one another in 
defining the cognitive load variations. The classification was 
performed only on 5channels with the smallest p-values from 
TABLE II.  The classification results for all features, on the 
selected channels which are averaged across all participants 
are displayed in TABLE III. As shown, 3 channels, namely; 
Pz, Cp2, Fp2 channels present a high classification accuracy 
of over 95%. 

V. CONCLUSIONS 

In this study, we investigated the high ability of few 
spectral features in discriminating three cognitive load levels. 
This discrimination was found to be statistically significant 
using the Enrg, and SpEn as the best performing features, 
followed by IwMf,  EdFr, and IwBw, respectively. The Enrg, 
and SpEn features trend appeared to decrease as the cognitive 
load level increased. Although, this trend seemed to increase 
for the IwMf, EdFr, and IwBw features as the cognitive load 
level increased.  The optimal frequency band was also found 
to be highly dependent on the spectral features in use. The 
delta sub-band yielded the best performance for the IwMf, 
IwBw, and EdFr features. However, this highest performance 
was achieved for the SpEn and Enrg in the 0δ , and 1δ sub-
bands. Clearly, this needs to be further validated on other 
databases. Combination of all the features into the classifier 
resulted in superior performance compared to one feature 
taken alone, suggesting that each feature captures different 
information/characteristics of the signal. Therefore, the 
feature combination defines the cognitive load variations 
better. 

TABLE III 
Accuracy of the 3 load level classification for all features by a SVM with 

linear kernel, averaged over all participants. 
 

 
EEG channel 

 
P3 

 
Pz 

 
CP2 

 
Fp2 

 
Fz 

 
Classification 
accuracy % 

86.62 95.55 95.55 97.77 82.21 

 

We also determined the few channels which present the 
highest classification accuracy among the three load level 
induced. This suggests that a smaller number of EEG 
channels may be needed for future similar work. However, 
this needs to be further validated on a larger database. Future 
work includes collection of EEG data across a larger number 
of cognitive load levels, which will pose a substantially more 
difficult classification task. 
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