
  

  

 

 

 

 

Abstract — The Particle Swarm Optimization (PSO) 

algorithm is applied to the problem of “load sharing” among 

muscles acting on the same joint for the purpose of estimating 

their individual mechanical contribution based on their EMG 

and on the total torque. Compared to the previously tested 

Interior-Reflective Newton Algorithm (IRNA), PSO is more 

computationally demanding. The mean square error between 

the experimental and reconstructed torque is similar for the two 

algorithms. However, IRNA requires multiple initializations 

and tighter constraints found by trial-and-errors for the input 

variables to find a suitable optimum which is not the case for 

PSO whose initialization is random.  

I. INTRODUCTION 

Most researchers agree that the torque-EMG relationship 

during isometric contraction of a muscle is monotonic and of 

the type 2
1 m

m mT sEMG
ωω= × where sEMG is the surface 

EMG (sEMG) envelop, m is the muscle index considered 

and �1 and �2 are suitable coefficients to be identified.  

Minimization of the mean square error, between the 

measured and the total estimated torque 

1

N

t m

m

T T
=

=� (with N 

muscles involved) provides an estimate of the model 

parameters � that in turn provide the force contributions of 

the individual muscles. This problem has been previously 

approached using the Interior-Reflective Newton Algorithm 

(IRNA) [1] and is addressed here using the particle-swarm-

optimization (PSO) algorithm which offers some advantages. 

II. METHODS 

A. Experimental recordings 

Five healthy male subjects (mean ± std , age: 21.3 ± 2.8 

years; stature 174.3 ± 2.6 cm; body mass 71.0 ± 3.4 kg) 

participated in the study after giving written informed 

consent in accordance with the Declaration of Helsinki. 

sEMG signals were recorded from the Biceps Brachii (BB), 

Brachioradialis (BR), lateral and medial head of the Triceps 

Brachii (TBL and TBM) during isometric voluntary 

flexions-extensions with the elbow flexed at 90°. A two-

dimensional adhesive array of 65 electrodes of circular shape 

(5 columns and 13 rows, 8 mm inter-electrode distance, 

LISiN – Spes Medica, Battipaglia, Salerno, Italy) was used 
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to detect signals from the BB muscle distal half. Three linear 

arrays of 8 electrodes (5 mm inter-electrode distance) were 

used to acquire signals from BR, TBL, and TBM. 

The main innervation zone (IZ) was located for each muscle 

prior to the electrode-array placement and the adhesive 

arrays were placed either proximally or distally from the 

main IZ location depending on anatomical features of the 

subject. The reference electrode was placed at the wrist. The 

skin was abraded with a paste (Meditec–Every, Parma, 

Italy). Monopolar surface EMG signals were amplified 

(multichannel surface EMG amplifier, EMG-USB, LISiN-

OT Bioelettronica, Torino, Italy), band-pass filtered (3 dB 

bandwidth, 10–750 Hz), and sampled at 2048 Hz with a 

resolution of 12 bits.The torque signal was measured by the 

isometric brace used for limb fixation, amplified (Force 

Amplifier MISO-II, LISiN, Politecnico di Torino, Italy), 

sampled at 2048 Hz, displayed in real-time on a computer 

screen as feedback to the subjects, and recorded concurrently 

with the EMG signals. Three maximal voluntary isometric 

flexion and extension contractions (fMVC, eMVC) lasting 

five seconds were performed at the beginning of the 

experimental session, and the highest was selected as the 

reference MVC for each direction. The subjects were 

requested to perform three series of flexion-extension force 

ramps lasting 25 s each. Each series consisted of four 

isometric ramps from n% eMVC to n% fMVC and back 

(with n= 30, 50, 70). Few ramps were performed before the 

beginning of the protocol to train the subjects to track the 

ramp target on the biofeedback screen. 

Monopolar sEMG signals were digitally band-pass filtered 

(20-450 Hz, 4th order Butterworth filter) and the force signal 

was low-pass filtered with a cut-off frequency of 1 Hz (4th 

order non-causal Butterworth filter). Single differential (SD) 

and double differential (DD) signals were computed along 

the fiber direction, thus obtaining three sets of signals 

(monopolar, SD, and DD). The envelope of sEMG signals 

was extracted by non-causal digital low-pass filtering (1 Hz, 

4th order Butterworth filter) of the rectified signals. For each 

muscle (i.e. detection system) the global envelope was 

computed as the spatial average of the corresponding 

recorded signals. 

B. The Mathematical model  

In this work, the estimated torque acting on the elbow is 

described by Eq.1. 
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2

[ ] 1 [ ]
m

m m

m muscles

M n sEMG n
ω

ω
∈

= ×��   (1) 

Where n  is the n-th sample of the envelope (sEMGm) 

( µ V), [ ]M n�  is the estimated torque (Nm), muscles identify 
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the set of muscles considered. In this model, �1m is the linear 

weight associated with the muscle m, and �2m is the 

exponential weight that takes into account the non-linearity 

of the relationship between sEMG and torque of muscle m. 

To estimate the model parameters (�1m, �2m), the sEMG-

torque relationship can be formulated as an optimization 

problem by minimization of the objective function defined in 

Eq.2,                  ( )
2

1
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where [ ]M n  is the measured torque, [ ]M n�  is the 

estimated torque (Eq.1), n is the sample index, and K is the 

number of samples in the signal. 

A. Constraint Optimization  

The values of the linear weights �1m resulting from the 

training phase are expected to be positive for flexor muscles 

and negative for extensor muscles. The values of �2m are 

expected to be in the range (0,1] [2],[3],[4]. 

The objective function customized for our study is reported 

in Eq.3. The constraint optimization is formulated using 

helping variables to find �1m and �2m. 
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Where helping variables xm and ym are real numbers ranging 

within [-R,R] (R=100, in our study), the first and second 

muscles are the elbow flexors (m=1,2; zm=1: biceps brachii, 

and brachioradialis) while the third and forth muscles are 

elbow extensors (m=3,4; zm=-1: the medial and lateral heads 

of triceps brachii). Twenty five seconds (the first cycle of 

flexion-extension) were used to estimate the linear and 

exponential weights. Kt is the number of samples 

corresponding to the first cycle of flexion-extension.  

The accuracy of the algorithm was assessed in terms of 

relative errors (in percent), defined as 100 e× . 

 The performance of the algorithm was measured using 

Evals, number of evaluations of the objective function and 

the total execution time of the algorithm used to solve the 

optimization problem. 

B. Particle Swarm Optimization (PSO)  

PSO is a meta-heuristic population-based stochastic 

optimization algorithm, originally proposed to simulate the 

social behavior of a flock of birds [5]. In this method, each 

"particle" is a candidate solution that "flies" through the 

search space. The path of each particle is influenced by its 

own experience and that of its neighbors. In our case, the 

neighborhood of each particle is the entire swarm (star 

topology) [6]. Each particle (i) is characterized by: its 

current position (xi); its current velocity (vi); the personal 

best position it has found (corresponding to the lowest 

minimum of the cost function so far) (yi); the best position 

reached by any of the particles so far ( ŷ ). 

At each iteration, these features are updated as follows [7]: 
1 1j j j

i i i

− −
= +x x v          (4) 
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where j is the iteration number, and • denotes element-by-

element multiplication. The new velocity depends on the 

previous velocity and on the distances of the particle from 

the personal and neighborhood best positions [6], with the 

coefficient w being the “inertia” weight, c1 the “cognitive 

acceleration” coefficient (=2.0), c2 the “social acceleration” 

coefficient (=0.5), and r1 and r2 random vectors whose 

elements are uniformly distributed in U(0,1). A large value 

of inertia weight favors global search ("exploration"), while 

a small value favors local search ("exploitation"). A strategy 

is to set the value high initially (1.2) to encourage 

exploration, and then reduce it towards a low value (0.1) to 

fine tune the final solution. To prevent oscillations the 

velocity components are limited to [-vmax,vmax], where vmax is 

set to 4.  Whenever the absolute value of the positions x 

reaches the limit 100, they are clamped and the sign of the 

corresponding velocities v is changed to continue searching 

within the defined ranges. The maximum number of 

iterations (max_iter) is 500× K+200, where K is the number 

of muscles. The number of particles in the swarm is set to 

20 10 2* K+ .Several extensions and modifications to the 

standard method were used to speed convergence and 

discourage premature convergence to a non-global minimum 

as follows:  

(1) Multi-start PSO Approach: the PSO algorithm is run 

twice [8]. The best result found at the first iteration is used as 

a particle in the second run. Increasing the number of runs 

increases the chances of finding the global minimum, but at 

the cost of increased computation time. (2) Sobol's 

quasirandom sequence: sixty percent of the particles are 

filled with uniform random values, while the remaining 40% 

are filled with Sobol's quasirandom sequence [9], which 

covers the search space regularly. (3) Random PSO 

Approach: Randomized particles are introduced in the swarm 

as follows [8]: every 40 iterations, the positions of the 

particles filled with the Sobolian Sequence, are re-initialized 

using the next generation of Sobol's sequence. (4) Breeding 

Algorithm: breeding (arithmetic cross-over) operator was 

taken from the genetic algorithm to increase the performance 

of the PSO [10]. Every iteration, there is a 20% chance that 

two offspring particles are generated using the arithmetic 

mean of two randomly chosen (from the non-Sobolian 

partition) parent particles. (5) Swarm Regeneration and 

Multi-Swarm Strategy [11]: if a swarm's best solution does 

not change for 200 iterations, then a new, randomly 

initialized swarm is created to increase the exploration while 

the original swarm is kept for further tuning the solution 

found. The maximum number of Swarms is set to the number 

of muscles. After the initialization of PSO, two swarms are 

generated. A swarm is deleted if all of its particles converge 

to a single solution. Finally, a multi-criteria for terminating 
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the PSO (based on the maximum number of iterations and 

the diameter of the swarm) was used [12]. 

 

III. RESULTS 

Fig. 1a shows the comparison between the recorded and 

estimated torques. The contribution of the four muscles 

acting on the elbow joint is also reported. Fig. 1b depicts the 

single differential sEMG envelops of the above mentioned 

muscles. Table I reports the results of Particle Swarm 

Optimization on Single-Differential Recoding for 5 subjects 

during elbow flexion-extension isometric ramps on the 

training and test sets at 30%, 50% and 70% Maximum 

Voluntary Contractions (MVC). The cross-checking results 

of Particle Swarm Optimization on Monopolar, Single-

Differential, and Double Differential recordings for elbow 

flexion-extension at 30% and 70% MVC are reported in 

Table II. The missing data in the tables correspond with the 

conditions in which subjects could not follow the force target 

and the force variations were not acceptable. 

IV. DISCUSSION AND CONCLUSIONS 

The issue of muscle force prediction from EMG has been 

addressed in the literature, e.g. [13], [14], [15]. Unlike other 

methods that considered linear relationship between EMG 

and force [13], [14], a non-linear model was proposed in this 

work. As underlined by Clancy et al. [13], using non-linear 

models is possible to capture additional subtle behavior in 

EMG-force relationship. Also, our model does not require 

preset musculoskeletal parameters (e.g. parallel elastic 

stiffness and damping [15]). 

When solving an optimization problem, the global optimal 

solution is required in an acceptable amount of time. There 

are different methods capable of finding solutions to 

optimization problems including exact methods, Heuristics 

and Meta heuristics [16]. Exact methods solve optimization 

problems by searching the entire solution space exhaustively. 

However, a large number of optimization problems belong to 

the NP-complete class and solutions cannot be found by 

exact methods except for small instances. For example, in 

our case the objective function has 8 continuous input 

parameters; using the absolute input ranges of 10 for linear 

coefficients (in steps of 0.1) and 1 for exponential ones (in 

steps of 0.01), more than 1.45×10
20

 cases should be taken 

into account to find the global optimum by brute-force 

TABLE I 

RESULT OF PARTICLE SWARM OPTIMIZATION ON SINGLE-DIFFERENTIAL 

RECODING FOR FIVE SUBJECTS DURING ELBOW FLEXION-EXTENSION 

ISOMETRIC RAMPS ON THE TRAINING AND TEST SETS @ 30%, 50% AND 

70% MAXIMUM VOLUNTARY CONTRACTIONS (MVC); AVERAGE (±SD) 

REL ERR OBTAINED IN THE TRAINING AND TEST SETS WERE 10.2±3.5 (%) 

AND 14.4±4.5 (%) RESPECTIVELY. 

 

Subjects S1 S2 S3 S4 S5 

30% 

MVC 

Training  

Set 

# Swarms 2 , 4 4 , 4 2 , 4 - 2 , 4 

Evals 0.80 1.08 0.80 - 0.80 

Time (s) 465 619 460 - 478 

Rel Err 

(%) 
10.8 7.4 14.3 - 18.6 

Test Set 
Rel Err 

(%) 
14.6 10.6 13.9 - 22.2 

50% 

MVC 

Training  

Set 

# Swarms 3 , 4 2 , 4 2 , 4 2 , 4 4 , 4 

Evals 1.92 0.80 0.80 0.80 0.97 

Time (s) 1121 461 475 508 595 

Rel Err 

(%) 
9.5 6.6 6.6 10.1 10.7 

Test Set 
Rel Err 

(%) 
12.3 10.3 11.1 11.4 24.0 

70% 

MVC 

Training  

Set 

# Swarms 2 , 4 - 4 , 3 - 2 , 4 

Evals 0.80 - 1.52 - 1.58 

Time (s) 467 - 956 - 979 

Rel Err 

(%) 
11.8 - 7.6 - 6.5 

Test Set 
Rel Err 

(%) 
14.7 - 16.4 - 11.3 

# Swarms=number of swarms generated in the PSO algorithm for the 

first and second runs respectively, Evals= number of evaluations of the 

objective function (x106), Time= total execution time of the PSO at the 

first and second runs, Rel Err= the RMS of the force prediction error 

divided by the RMS of the measured force. 

 

TABLE II 

THE CROSS-CHECKING RESULTS OF PARTICLE SWARM OPTIMIZATION ON 

MONOPOLAR AND SINGLE-DIFFERENTIAL RECORDINGS FOR 5 SUBJECTS 

DURING ELBOW FLEXION-EXTENSION ISOMETRIC RAMPS ON THE TRAINING 

AND TEST SETS (USING THE COEFFICIENTS OBTAINED @ 50% MVC TO 

ESTIMATE THE FORCE @ 30% AND 70% MVC) 

 

Subjects S1 S2 S3 S4 S5 

Total:  

Mean 

± Std 

Monopolar 

Rel 

Err 

% 

30% 

MVC 
33.6 19.4 32.3 - 17.9 26.0 ± 

 7.2 

N=7 
70% 

MVC 
18.2 - 31.4 - 29.2    

Single-

Differential 

Rel 

Err 

% 

30% 

MVC 
23.8 13.7 21.9 - 35.1 25.3 ± 

 6.7 

N=7 
70% 

MVC 
28.1 - 26.1 - 28.4 

Double-

Differential 

Rel 

Err 

% 

30% 

MVC 
29.7 16.4 15.2 - 42.2 28.7 ±  

10.0 

N=7 
70% 

MVC 
37.0 - 30.9 - 29.5 

Rel Err= the RMS of the force prediction error (using the coefficients       

obtained @ 50% MVC) divided by the RMS of the measured force. 

 
Fig. 1.  a) recorded Torque “Tr” (solid blue) and estimated Torque “Te” (dotted 

red) in addition to the reconstructed Torques for each muscle (top). b) single 

differential sEMG envelopes for biceps brachii (dashdot black), brachioradialis 

(dashed green), medial and lateral heads of the triceps brachii (solid magenta 

and dotted cyan) for subject no. 5 during a 70 %MVC elbow flexion-extension 

isometric ramps. The sEMG signals and measured torque up to 25.6 s (shown 

by the tick dashed black line) were used to estimate the parameters (phase 1) 

and the rest was used for the test (phase 2). 
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approach. This is quite time-consuming and impractical. 

Also, its accuracy depends on the resolution (step) chosen 

for each input variable.  

Approximation methods in optimization, on the other hand, 

provide the approximate solution in reasonable amount of 

time but imply the risk of not finding the global optimum. In 

Heuristics, e.g. local search, the best possible solution is 

found close to the starting point. Local search does not 

guarantee the finding of the best solution; it is only able to 

find the best one in the neighborhood of the starting point. 

Thus, it is quite probable to get stuck in the local optimum.  

Evolutionary Computations (EC) simulates some of the 

known mechanisms of evolution. They differ from the 

traditional search methods in the following three concepts: 

they use a population of potential solutions, decision making 

processes are guided by fitness information alone and 

decisions are probabilistic rather than deterministic. In EC, 

the possibility of getting stuck in local optimum is decreased 

by introducing a population of possible solutions (particles) 

and the randomness of their behavior. A particle by itself has 

almost no power to solve any problem; progress occurs when 

the particles interact [17]. PSO is one of the recent EC 

techniques introduced and its application has increased 

exponentially in the last decade [17]. Using multiple swarms, 

it was possible to keep track of some of the local minimums 

found by the swarms before re-generation that helps to 

consider other minimum points that are more physiologically 

feasible. 

With respect to previously tested methods [1], the PSO 

algorithm eliminates the problems of initialization and has an 

intrinsically higher likelihood of finding the global minimum 

and nearby relative minima that might be worth of 

consideration. However, the computational load of PSO is 

greater than that of IRNA. The fact that the EMG of some 

deep muscles cannot be collected with surface electrodes 

(e.g. brachialis muscle) remains a strong limitation and major 

cause of error. The error in reconstructing the total torque 

with the two algorithms is not that different (13.2 ± 3 % for 

IRNA, and 10.2 ± 4 % for PSO in the training set). However, 

IRNA required several initializations and tighter constraints 

found by trial-and-errors for the input variables to find a 

suitable optimum which was not the case for PSO whose 

initialization was random. 

Future works will focus on designing a multi-objective 

optimization to include other cost functions e.g. minimizing 

the energy consumed in our muscles as the optimum control 

of our neuro-muscular system and implementing the PSO in 

C++, with multi-threads (each swarm as a thread) and using 

the Vectorization packages [7] to reduce the computational 

time listed in Table I.  

In this work the activity of the muscles was estimated by 

spatial averaging of the sEMG envelop over the entire 

detection system. Automatic segmentation of multichannel 

EMG activity to improve the estimation of neuromuscular 

activity [18] and other pre-processing techniques (such as 

whitening [19]) might increase the performance of the 

algorithm. Moreover, our results must be compared with 

those obtained in similar studies [13], [14]. 
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