
 

 

 

  

Abstract—The electromyograpy (EMG) signal provides 

information about the performance of muscles and nerves. The 

shape of the muscle signal and motor unit action potential 

(MUAP) varies due to the movement of the position of the 

electrode or due to changes in contraction level. This research 

deals with evaluating the non-Gaussianity in Surface 

Electromyogram signal (sEMG) using higher order statistics 

(HOS) parameters. To achieve this, experiments were 

conducted for four different finger and wrist actions at 

different levels of Maximum Voluntary Contractions (MVCs). 

Our experimental analysis shows that at constant force and for 

non-fatiguing contractions, probability density functions 

(PDF) of sEMG signals were non-Gaussian. For lesser MVCs 

(below 30% of MVC) PDF measures tends to be Gaussian 

process. The above measures were verified by computing the 

Kurtosis values for different MVCs.  

I. INTRODUCTION 

lectromyography (EMG) signals detected directly using 

needle electrodes or surface EMG show a train of 

motor unit action potentials (MUAP) plus noise. An MUAP 

is sum of a large group of muscle fiber action potentials 

(MFAP), where each MFAP consists of superimposed 

information of the muscle and neuron firing signals [1].  

The origin of each of the MUAP is inherently random and 

the electrical characteristics of the surrounding tissues are 

non-linear. The MUAP firing pulses are generally 

considered a random function of time which is non-

Gaussian in nature [2]. Due to the nature of this signal the 

amplitude of the EMG signal is pseudo-random and the 

shape of the probability distribution function (PDF) 

resembles a Gaussian function. Surface EMG is a non-

invasive recording, requires relatively simple equipment, 

and this opens it for numerous applications. The close 

relationship of surface EMG with the force of contraction of 

the muscle is useful for number of applications such as 

sports training and for machine control [3-5]. 

While there are numerous applications for surface EMG, 

these are limited due to reliability issues. There are many 

factors which can affect the appearance of the MUAP such 

as: 

• Type of electrodes (invasive or non-invasive) 

• The muscle anatomy (number of active motor 
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units, size of the motor units, the spatial 

distribution of motor units) 

• Muscle physiology (trained or untrained, disorder, 

fatigue). 

• Nerve factors (disorder, neuromuscular junction). 

• Contraction types (level of contraction, speed of 

contraction, isometric/non-isometric). 

•  Artefacts (crosstalk between muscles, ECG 

interference). 

•  Recording apparatus factors (recording-method, 

noise, electrode's properties and recording sites)  

The amplitude of the MUAP in the EMG signal is related 

to a certain extent to the force of muscle and level of 

contraction. Peripheral factors such as spacing, type and 

size of electrodes may also have an influence on the signal, 

and to obtain reliable information, considering such factors 

is critical. Some of these factors may be handled through 

careful skin preparation, and by selecting proper anatomical 

landmarks for the placement of electrodes. These factors 

can easily influence the sEMG signal strength when there is 

different force levels (different levels of muscle activity), 

such as dynamic hand or finger movements [6, 7]. In these 

situations, cross-talk among the different muscle groups is 

one of the major obstacles for the sEMG. To minimise the 

cross-talk, it is important to identify the muscle activity of 

each of the muscles responsible for the action. Similarity in 

the spectrum and other properties of the activity from the 

different muscles makes the separation of these difficult. 

There is a need to separate the muscle activity originating 

from different muscles. With little or no prior information 

of the muscle activity from the different muscles, this is a 

blind source separation (BSS) task. Independent component 

analysis (ICA) is an iterative BSS technique which is a non-

Gaussian scheme and has been found to be very successful 

in audio and biosignal applications [8-10]. 

Signals such as Surface EMG have probability densities 

that are close to Gaussian while artefacts such as ECG and 

motion artefacts have non Gaussian distributions. From the 

above, it can be suggested that ICA may suitably isolate 

some of the above signals, while its efficacy for separating 

the others maybe questionable. It is difficult to identify the 

quality of separation of EMG from one muscle and the 

neighbouring muscles, or that of EEG from one channel to 

the neighbouring recording sites, making it difficult to 

confirm or negate the above. Hence this paper reports the 

Evaluation of higher order statistics parameters for multi channel 

sEMG using different force levels 

Ganesh R. Naik, Member, IEEE, Dinesh K. Kumar, Member, IEEE 

E 

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 3869

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



 

 

 

preliminary analysis required for measuring the Gaussianity 

of the functions prior to using ICA. Our objective is to 

illustrate the degree of non-Gaussianity of sEMG, and to 

establish the validity of employing the higher order 

statistics (HOS) parameters in sEMG signal processing, as 

these statistics are applicable only to non-Gaussian (or 

possibly nonlinear) processes.  

II. HOS THEORY FOR SEMG ANALYSIS 

Conventional signal processing techniques are generally 

based on the analysis of the first and second order moments 

and cumulants (i.e. mean, correlation and variance) and 

their spectral representation (e.g. power spectrum). These 

techniques provide all the information available from the 

signal only if the underlying process is Gaussian and is 

operated on by a linear system. For non-Gaussian processes 

and nonlinear systems, more information can be obtained 

from the higher order moments and cumulants (3rd order to 

Nth order) and their spectral representation (higher order 

spectra). The second order spectrum suppresses phase 

relationships, whereas information about the phase of the 

underlying system is available from higher order spectra 

[11]. Higher order statistics are useful in BSS methods and 

system recovery. Since they do not suppress phase 

information, they are able to recover information about non-

Gaussian signals.  

A. Non-Gaussianity and Independence 

There are several measures of non-Gaussianity that can 

be used. The classical one is Kurtosis value or fourth order 

cummulant. This value is zero, negative and positive for 

Gaussian, sub-Gaussian and super-Gaussian data 

respectively. Gaussianity also implies the degree of 

randomness of a signal and is related to information content 

of a signal. According to central limit theorem the 

distribution of a sum of independent signals with arbitrary 

distributions tends toward a Gaussian distribution under 

certain conditions. The sum of two independent signals 

usually has a distribution that is closer to Gaussian than 

distribution of the two original signals. Thus a Gaussian 

signal can be considered as a linear combination of many 

independent signals. This also explains that separation of 

independent signals from their mixtures can be achieved by 

finding a transformation that yields non-Gaussian 

distributions [12, 13]. Non-Gaussianity is an important and 

essential principle in ICA estimation. To use non-

Gaussianity in ICA estimation, there needs to be 

quantitative measure of non-Gaussianity of a signal. Before 

using any measures of non-Gaussianity, the signals should 

be normalised [14, 15]. Some of the commonly used 

measures are Kurtosis and entropy measures. Kurtosis is the 

classical method of measuring Non-Gaussianity. When data 

is preprocessed to have unit variance, Kurtosis is equal to 

the fourth moment of the data. The Kurtosis of signal (s), 

denoted by kurt (s), is defined by 

 

                      { } { }( )244 3)( sEsEskurt −=                 (1) 

Kurtosis can be either positive or negative. Random 

variables that have a negative Kurtosis are called sub-

Gaussian, and those with positive Kurtosis are called super-

Gaussian. Super-Gaussian random variables have typically 

a “spiky” PDF with heavy tails, i.e. the PDF is relatively 

large at zero and at large values of the variable, while being 

small for intermediate values. Sub- Gaussian random 

variables, on the other hand, have typically a “flat” PDF, 

which is rather constant near zero, and very small for larger 

values of the variable [8-10]. Normally non-Gaussianity is 

computed by the absolute value of Kurtosis. In this research 

Kurtosis parameters are used for evaluation of Gaussianity 

in sEMG signals. 

B. Gaussianity and ICA 

Gaussianity is a cost-function when ICA estimates the 

mixing matrix and signals from Gaussian sources cannot be 

separated from their mixtures using ICA [8-10]. 

Mathematical manipulation demonstrates that all matrices 

will transform this kind of mixtures of Gaussian signals to 

another set of Gaussian signals. However, a small deviation 

of the density function from Gaussian may make it suitable 

as it will provide points on the ICA optimization landscape, 

making Gaussianity based cost function suitable for 

iteration. If one of the sources has density far from 

Gaussian, ICA will easily detect this source because it will 

have a higher measure of non-Gaussianity and the 

maximum point on the optimization landscape will be 

higher. If more than one of the independent sources has non 

Gaussian distribution, those with higher magnitude will 

have the highest maximum point in the optimization 

landscape. Given a few signals with distinctive density and 

 
 

Fig. 1.  The experimental setup for finger flexion experiment. 
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significant magnitude difference, the densities of their linear 

combinations will tend to follow the ones with higher 

amplitude. Since ICA uses density estimation of a signal, 

the components with dominant density will be found easier.  

III. METHODOLOGY 

A. sEMG experiments for different force levels 

The experiments were approved by the human ethics 

committee in accordance with Australian NHMRC 

guidelines. Ten healthy participants with no history of 

major neurological disorder participated in the study. 

Experiments were conducted where sEMG from the Flexor 

digitorum superficialis (FDS) muscle was recorded when 

the participants maintained specific finger flexion. FDS lies 

in the anterior compartment of the forearm, which has a 

primary function of flexing the digits in finger movements 

[16]. The two electrodes were placed on FDS muscle as 

shown in Figure 1. The force of contraction was measured 

using FlexForce sensor. The FlexiForce A201 (Tekscan, 

Boston, MA, USA) force sensor is an ultra-thin, flexible 

force sensor that can be fixed to measure the force of 

contraction from each of the fingers.   

At the start of the experiment, the participants were made 

to generate maximum voluntary contraction (MVC) for 10 

seconds and this was repeated 5 times. Based on the study 

of Basmajian and De Luca [17], the average of these five 

recordings was considered to be the MVC. Four different 

finger and wrist actions were used as protocol to record 

sEMG from the participants: Wrist flexion, Middle finger 

flexion, Ring finger flexion and Little finger flexion.  

The participants were asked to maintain each flexion for 

7-8 secs for three different levels of forces i.e., 20%, 50% 

and 80% of MVC. The duration of each run of the 

experiment was 120 secs. The sampling rate for recording 

sEMG was 1024 samples/sec. The change in resistance of 

the FlexiForce is the measure of force of the sensor. To 
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Gaussian

 
              Fig. 3.  sEMG with 50% force levels (MVC) 

record the force exerted on the sensor, voltage across a 

fixed resistance in series with FlexiForce force sensor was 

recorded at 1024 samples/sec along with sEMG signal. 

Visual feedback of the force sensor output was given to the 

user to maintain steady muscle contraction.  

B. Data Analysis 

The experimental data for different MVCs (20%, 50%, 

and  80% ) was analysed using two prominent higher order 

measures. They are 

• Non-Gaussianity measure (PDFs) and 

• Kurtosis measures. 

The Non-Gaussianity measures were plotted using the 

Gaussianity as reference. The Kurtosis values were calcuted 

using the Equation (1). Finally the computed Kurtosis 

values were plotted with respect to different force levels. 

IV. RESULTS 

The results for Gaussinity and non-Gaussianity measures 

are plotted for different MVCs. The results for 20%, 50% 

and 80% MVCs are shown in Figure 2, 3 and 4 

respectively. The average Kurtosis values for the different 

MVC parameters are tabulated in Table 1. The Kurtosis vs. 

different force level plot is shown in fig. 5. 
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               Fig. 2.  sEMG with 20% force levels (MVC). 
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              Fig. 4.  sEMG with 80% force levels (MVC) 
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TABLE I 

AVERAGE KURTOSIS VALUES FOR DIFFERENT MVCs 

MVCs (%) Kurtosis 

20 3.4053 

50 2.1233 

80 0.003 

V. DISCUSSIONS AND CONCLUSION 

The results demonstrated the importance of HOS 

parameter calculations in sEMG signal processing. One of 

the main reasons is that, second order spectrum suppresses 

phase relationships, whereas information about the phase of 

the underlying system is available from higher order 

spectra. Furthermore, due to cross-talk and other related 

factors the MUAP under different force levels tends to be 

Gaussian in nature. Hence the results from these studies 

could be used as pre-processing technique before 

computation of ICA.  

In the recent past it has been assumed that the sEMG 

signal recorded under constant-force and non-fatiguing 

conditions can be modeled as a zero mean Gaussian 

process. This research study shows that the PDF of the 

signal may become more or less Laplacian (super-Gaussian) 

depending on the level of MVC. Based on the research it 

can be inferred that during low MVCs fewer motor units are 

active, as the MVCs increases more motor units are fired 

and thus making the signal less super-Gaussian. This is also 

tested using Kurtosis where the Kurtosis values decreased 

as the MVCs increased. 

Using Gaussianity as a criterion for measuring the quality 

of the source separation, we have shown that usually the 

density shape is closer to Laplacian (super Gaussian) in 

light forces and tends towards Gaussian with increasing the 

level of MVC. We think that with increasing the force level 

during the contraction, more motor unit action potentials 

will be fired. As the sEMG signal is the superposition of 

these potential, it tends to a Gaussian process in high force 

levels.   
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              Fig. 5. Average Kurtosis vs. force levels (% of MVC) 
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