
  

 

Abstract—Myoelectric pattern recognition control can 
potentially provide upper limb amputees with intuitive control 
of multiple prosthetic functions. However, the lack of 
robustness of myoelectric pattern recognition algorithms is a 
barrier for clinical implementation. One issue that can 
contribute to poor system performance is electrode shift, which 
is a change in the location of the electrodes with respect to the 
underlying muscles that occurs during donning and doffing and 
daily use. We investigated the effects of interelectrode distance 
and feature choice on system performance in the presence of 
electrode shift. Increasing the interelectrode distance from 2 cm 
to 4 cm significantly (p<0.01) improved classification accuracy 
in the presence of electrode shifts of up to 2 cm. In a 
controllability test, increasing the interelectrode distance from 
2 cm to 4 cm improved the user’s ability to control a virtual 
prosthesis in the presence of electrode shift. Use of an 
autoregressive feature set significantly (p<0.01) reduced 
sensitivity to electrode shift when compared to use of a 
traditional time-domain feature set. 

I. INTRODUCTION 

LECTROMYOGRAPHIC (EMG) signals have been 
used for decades to control prosthetic devices. In 

conventional EMG control systems, the amplitude of the 
EMG signal is mapped to an actuated degree of freedom [1].  
This control scheme has gained widespread clinical 
acceptance, but is limited to control of one or two degrees of 
freedom, due to the limited independence of signal sources 
[2-4]. 
 Pattern recognition for upper extremity prosthesis control 
has recently received considerable attention [5-8] but has not 
yet been clinically implemented. This control scheme has the 
potential to restore control of a greater number of degrees of 
freedom than conventional EMG control by combining 
information across multiple signal sources. Pattern 
recognition relies on the user to produce distinct, repeatable 
EMG signal patterns for each motion class [6], which is a 
reasonable requirement for experienced users. Lack of long-
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term robustness is a significant difficulty for clinical 
implementation. One major cause of system degradation is 
electrode shift, which has been shown to have a detrimental 
effect on myoelectric pattern recognition [9-11]. Electrodes 
are typically embedded in the prosthetic socket and may 
shift with respect to the underlying muscle as a user moves 
the limb and during prosthesis donning and doffing. 
Currently, the only strategies to deal with electrode shift are 
to train the system at the expected displacement locations 
[10] or to retrain the classifier entirely after electrode shift. 
The former requires a considerable amount of time and 
effort during training, since the electrodes have to be placed 
at the expected displacement locations, and the latter is a 
significant daily time burden on the user. 
 This study is part of an ongoing effort to increase the 
reliability of myoelectric pattern recognition systems in the 
presence of electrode shift [12]. Interelectrode distance 
(pole-to-pole spacing of a bipolar electrode pair) is an 
important property of the EMG signal detection interface. 
The typical clinical interelectrode distance is 2 cm; this 
value was selected in order to minimize muscle signal 
crosstalk [13]. The interelectrode distance affects the pickup 
volume of the EMG detection system [14] such that larger 
interelectrode distances yield greater pickup volumes. With 
a larger pickup volume, the chances for muscle signal 
crosstalk increase, but the relative magnitude of electrode 
shift relative to the electrode detection volume decreases, 
potentially reducing the effects of electrode shift. Also, the 
intramuscular cross-talk contributes relatively equally at 
shifted locations, thus providing a useful discriminatory 
signal when electrodes are shifted. In this study, we analyzed 
the effect of interelectrode distance on pattern recognition 
algorithms in the presence of electrode shift by measuring 
both classification error and online controllability as 
quantification metrics. 
 A number of studies have investigated feature extraction 
from myoelectric signals [11], [15], [16]. Time-domain (TD) 
features are computationally efficient to compute, but 
autoregressive (AR) features have been shown to be the 
most effective [16]. A combined time-domain and 
autoregressive feature set may perform slightly better [15]. 
In this study, we investigated each of these feature sets and 
their effect on classification error in the presence of 
electrode shift. 
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II. METHODS 

A. Data Collection 

Surface EMG recordings were collected from seven non-
amputee subjects for seven motion classes. Two control sites 
were used with one site on the forearm extensor muscles and 
one site on the forearm flexor muscles. At each control site, 
two surface Ag/AgCl EMG electrodes (Bio-Medical 
Instruments) were placed longitudinally in the direction of 
the underlying forearm muscle fibers forming two bipolar 
electrode channels. 

Training and testing data were initially recorded at the 
nonshifted electrode locations for three interelectrode 
distances. Data were recorded for seven motion classes: 
wrist flexion, wrist extension, hand open, hand close, 
forearm pronation, forearm supination, and a relaxed (or no 
motion) class with two repetitions each per trial in random 
order. Subjects performed isometric contractions for 4 s, 
producing a total of 16 s of training data and 16 s of testing 
data at each of the three nonshifted locations. 

Data on each side of the arm were collected at nine 
different electrode configurations. The three interelectrode 
distances tested were 2 cm, 3 cm, and 4 cm. These distances 
were created by moving the distal electrode of each bipolar 
pair (Fig. 1). Electrode shifts were performed in a direction 
perpendicular to the underlying muscle fibers (clockwise 
from the user’s perspective) at distances of 1 and 2 cm (see 
Fig. 1). Shifts were only tested in the perpendicular direction 
because previous research indicated that this had the greatest 
effect on pattern recognition performance [12]. Testing data 
were collected at all three electrode interelectrode distances 
for the no-shift, 1 cm shift, and 2 cm shift conditions. The 
order of collection across these configurations was 
randomized for each subject. 

The Target Achievement Control (TAC) test was used to 
assess controllability. This test prompts the user to move a 
virtual hand to designated postures and gives real-time 
visual feedback of the virtual arm’s position. Full 
descriptions of this test are provided elsewhere [17], [18]. In 
this study, each prompted posture required the user to 
perform only one motion class, but all seven classes were 
active at all times. Subjects were therefore forced to correct 
for any extraneous movements in order to reach the target 
posture. Each target posture required subjects to move the 
virtual prosthesis through 75 degrees of motion into a target 
zone. Once there, the virtual hand changed color and 
subjects had to dwell within the target zone for 2 s to 
complete a trial. Performance was measured in terms of 
completion rate (the percentage of trials successfully 
completed) and completion time (the average time across all 
motions to complete a trial). One test consisted of 12 trials in 
which each of the six motion classes was completed twice. 
One TAC test was performed with electrodes arranged at 
four orientations: no shift and 2 cm shift with both the 2 cm 
and 4 cm interelectrode distances. Only four of the nine 
locations were tested for controllability due to long 
experimental times.  

B. EMG Signal Processing 

EMG signals were preprocessed by amplification 
(~2000x) and high-pass filtering (20 Hz cutoff frequency). 
Data were segmented into 250 ms windows with 50 ms of 
overlap [17]. TD and AR features were extracted from the 
EMG signals. The TD feature set included mean absolute 
value, zero crossings, slope sign changes, and waveform 
length. The AR feature set included the mean absolute value 
and the six coefficients of a 6th order autoregressive model, 
which was selected based on previous related work [15]. 
Linear discriminant analysis was used for feature 
classification because of its computational efficiency and 
comparable performance to other classification techniques 
[16].  

 

 
Fig. 1.  Shift and training locations of electrodes for two channels. 
Electrodes were shifted during the experiment such that the proximal 
electrode (left column in figure indicated by + signs) moved only 
perpendicularly through three locations (no shift, 1cm, and 2cm). The distal 
electrode was moved distally for larger interelectrode distances and 
perpendicularly for shifted locations through nine locations (each location is 
indicated by a – sign for each electrode). Channel 1 was located on the 
flexor muscles, and channel 2 was located on the extensor muscles with the 
same electrode placements as those shown. 
 

Many feature sets have been used in the literature to 
classify myoelectric signals. TD features were used for 
controllability testing due to the ease of implementation in 
real-time systems. However, other feature sets such as AR 
features may improve the robustness of pattern recognition 
systems and were investigated here offline.  

 

III. RESULTS 

A. A Comparison of Interelectrode Distances 

The performance of three interelectrode distances was 
compared in terms of classification error using TD features. 
In all cases, classification error rose with greater shift 
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distance (p<0.01). At all three test locations—no shift, 1 cm 
shift, and 2 cm shift—larger interelectrode distance 
decreased classification error (Fig. 2). Based on a post-hoc 
Bonferronni test, the 4 cm interelectrode distance performed 
better overall than the 3 cm (p<0.05) and 2 cm (p<0.01) 
interelectrode distances. The 2 cm and 3 cm groups were not 
statistically different (p = 0.329) in this study. 

 
Fig. 2.  Effect of interelectrode distance on classification error using TD 
features. Classification errors were averaged over seven subjects. A shift 
distance of 0 corresponds to classification error at the training location. 
Error bars show +/- 1 SEM. 

For the controllability tests, interelectrode distance made 
little impact in the absence of electrode shift: completion 
rates and completion times were nearly the same for 2 cm 
and 4 cm electrode spacing at the no shift location (Fig. 3). 
At the 2 cm shift location, completion rates were 20% higher 
(Fig. 3a), and completion times were over 2 s faster (Fig. 3b) 
with 4 cm interelectrode distance compared to 2 cm 
interelectrode distance. 

 
Fig. 3. Effect of interelectrode distance on system controllability in the 
presence of electrode shift. TAC test completion rates (a) and completion 
times (b) for tests conducted with electrodes at the no shift and 2 cm shift 
locations for interelectrode distances of 2 cm and 4 cm using TD features. 
Results are averaged over seven subjects with one outlier at the no shift 
location removed. Error bars show +/- 1 SEM. 

B. Feature Set Comparisons 

Classification performance resulting from use of AR and 
TDAR feature sets was compared to use of the TD feature 
set for both the 2 cm and 4 cm interelectrode distances (Fig. 
4). Use of TDAR features resulted in the lowest 
classification error, use of AR features resulted in the next 
lowest classification error, and use of TD features resulted in 
the highest error for both 2 cm and 4 cm interelectrode 
distances at no shift, 1 cm shift, and 2 cm shift locations. 
Also, the 4 cm interelectrode distance performed better than 
the 2 cm interelectrode distance regardless of feature choice. 
Based on a post-hoc Bonferronni test, the AR and TDAR 
feature groups performed significantly (p<0.05) better than 
the TD feature set. 

 
Fig. 4. Effect of feature set on classification error. Time domain (TD), 
autoregressive (AR) and a combination of time domain and autoregressive 
(TDAR) features were compared for 2 cm and 4 cm interelectrode distances 
(spacing). Results are an average of 7 subjects. Error bars show +/- 1 SEM. 

IV. DISCUSSION 

Electrode shift significantly degrades pattern recognition 
system performance, as demonstrated by real-time 
controllability tests and classification error. A shift of 2 cm 
was considered to be a worst-case scenario in practical use. 
With the standard interelectrode spacing of 2 cm, this shift 
degraded a classifier with high controllability (>90% 
completion rates) to one with low controllability (<60% 
completion rate). These results demonstrate the clear need 
for strategies to increase the robustness of pattern 
recognition interfaces to electrode displacement. 

Increasing the interelectrode distance resulted in a larger 
pick-up volume and helped to improve the robustness of the 
system to electrode shift as measured by both classification 
error and real-time controllability. Therefore, we 
recommend using larger interelectrode distances up to 4 cm. 

The selection of EMG feature set also affects the 
robustness of the pattern recognition system. Use of AR and 
TDAR feature sets significantly improved the pattern 
recognition system in the presence and absence of electrode 
shift. The average decrease in classification error resulting 
from use of TDAR features as opposed to TD features was 
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5.9% on average across all testing conditions. 
The most robust classifier in this study resulted from use 

of TDAR features and a 4 cm interelectrode distance. These 
two properties of the EMG signal detection system 
decreased classification error both independently and 
cumulatively, as demonstrated in Fig. 4. 

One notable limitation of this study was that only two 
EMG channels were recorded—a low number compared to 
other myoelectric pattern recognition studies. Future work 
will focus on the effect of the number of channels and 
specific electrode configurations to increase system 
robustness in the face of electrode shift. The interaction 
between these two properties and the interelectrode distance 
and feature sets presented in this study will also be 
addressed. 

Overall we have found that electrode shift significantly 
decreases the robustness of pattern recognition in terms of 
both classification error (Figs. 2 and 4) and controllability 
(Fig. 3). However, based on the results presented in this 
paper, we recommend utilizing wider interelectrode 
distances combined with TDAR features to increase 
robustness of pattern recognition systems to electrode shift. 
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