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Abstract— In the forward EIT-problem numerical solutions
of an elliptic partial differential equation are required. Given
the arbitrary geometries encountered, the Finite Element
Method (FEM) is, naturally, the method of choice. Nowadays,
in EIT applications, there is an increasing demand for finer
Finite Element mesh models. This in turn results to a soaring
number of degrees of freedom and an excessive number of
unknowns. As such, only piece-wise linear basis functions can
practically be employed to maintain inexpensive computations.
In addition, domain reduction and/or compression schemes are
often sought to further counteract for the growing number of
unknowns. In this paper, we replace the piece-wise linear with
wavelet basis functions (coupled with the domain embedding
method) to enable sparse approximations of the forward compu-
tations. Given that the forward solutions are repeatedly, if not
extensively, utilised during the image reconstruction process,
considerable computational savings can be recorded whilst
maintaining O(N) forward problem complexity. We verify with
numerical results that, in practice, less than 5% of the involved
coefficients are actually required for computations and, hence,
needs to be stored. We finalise this work by addressing the
impact to the inverse problem. It is worth underlining that the
proposed scheme is independent of the actual family of wavelet
basis functions of compact support.

I. INTRODUCTION

For the numerical solution of Partial Differential Equations
(PDEs) on arbitrary domains the Finite Element Method
(FEM) is the method of choice [3]. In particular, for relatively
low-discretisation levels and, hence, coarse mesh models,
the simplicity of FEM is hard to beat. As the discretisation
fidelity is refined however, the resulting fine mesh model
is characterised by an increasing number of degrees of
freedom and excessive number of unknowns. Therefore, one
resorts to implicit means of model reduction, as for instance
the Boundary Element Method (BEM) [6] and/or adaptive
refinement schemes [12].

Unfortunately, it is not always feasible to invoke a BEM
solver as for instance in the case of PDEs of anisotropic
coefficient distributions. In a similar manner, it is not always
practical to apply adaptive refinement schemes since meshing
the entire domain is a cumbersome and time-consuming
procedure. Not to mention that meshing in non-stationary
domains is a considerable task itself. This is the case for
Electrical Impedance Tomography (EIT) where solutions on
possibly non-stationary and anisotropic domains are sought.

In a typical EIT experimental setup, a prescribed current
stimulation ι is applied to the boundary of the body and
the developed fields υ are measured. The measured data
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set serves as the observable input to infer the unobservable
(material) distribution. Remarkably, in EIT, a set of voltage
measurements along with information about the underlined
geometry properties, suffices to form an image of the interior
material distribution. Indeed, EIT has been successful in
reconstructing material distribution in a number of medical
applications [1], [10], [15]. In general, EIT is considered
as an inexpensive and portable modality capable of non-
intrusively imaging the interior of a body.

In a typical clinical configuration, as for instance moni-
toring of lung activity [2], reconstructions need to take place
in real-time. Moreover, since EIT is capable of operating
on a 24/7 basis, vast data sets are anticipated, subject
to (post-) processing and image enhancement algorithms.
Taking into account the complexity of the chest area and
the anisotropy of the human body, the FEM appears to be
the method of choice. However, discretising such a 3D non-
stationary domain can be a rather challenging step due to the
aforementioned reasons. Indeed, for anisotropic problems the
meshing procedure requires extra care to avoid undesirable
and spurious effects during reconstructions.

In this paper, we propose the use of the Domain Embed-
ding Method (DEM) coupled with uniform grids to confine
the meshing procedure to the boundary surface in a spirit
very similar to BEM. In view of sparsity and compres-
sion, we propose the use of B-Spline wavelet functions
for the solution of the underlying Laplacian PDE. The
suggested scheme enables asymptotically optimal precondi-
tioning scheme as well as sparse approximations and, hence,
in-house compression and adaptivity.

In the next section, we provide an overview of the image
formation protocol in order to address how the proposed
configuration affects the image formation process. Next, we
give a quick overview of the carefully engineered weak
(forward) formulation and discretisation. We finalise this
study by providing the previously unavailable compression
scheme for EIT along with concluding remarks on the impact
to the inverse computations.

II. THE FORWARD PROBLEM SETUP

The mathematical setup for the EIT problem is sum-
marised by two problems; a forward and an inverse one.
The former is the one of approximating the solution of a
boundary value problem, given below in operator form as
[7]

Aσυ = ι (1)

978-1-4244-4122-8/11/$26.00 ©2011 IEEE 3892

33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011



A−1
σ M

ι υ y

Fig. 1. The block diagram of the forward process. Currents are driven to
the body and potentials are measured.

where Aσ is the Laplacian operator (of a possibly anisotropic
coefficient distribution σ, herein the material distribution)
coupled with boundary conditions [14], υ := [u, U ]T the
developed fields, u is the interior potential distribution and
U := [U1, . . . , UL] the surface potentials.

The latter problem is essentially an inverse boundary value
problem, where one attempts to infer the unknown material
distribution σ based on surface measurements (potentials).
In operator form the inverse (imaging) problem can be
summarised by a non-linear forward operator Λ as

Λ(σ) = y (2)

The two problems (1) and (2) are linked using the mea-
surement operator M as

y = Mυ (3)

which, typically, is a differential operator, i.e., transforming
potential measurements u|∂Ω on the boundary ∂Ω to voltage
measurements y.

A. Fast forward solutions are essential to the imaging pro-
cess

Note that in a typical optimisation scheme where σ is
estimated, the linearised version of the original problem (4)
is obtained. Using first order approximation and by ignoring
second order Taylor expansion terms one may obtain that

Jσ0δσ = δy (4)

where Jσ0
is the Jacobian evaluated at σ0, δσ:=σ − σ0 and

δy := y − y0 is the difference in the measurement data set
between two states of the material distribution δσ. This is
often quoted as differential imaging.

For either linear or nonlinear iterative schemes, the ef-
ficient evaluation of the densely populated, ill-conditioned
and rectangular matrix J is of paramount importance. The
adjoint fields method provides a means of numerically as-
sembling this matrix in an efficient manner [13]. This method
in turn necessitates the use of (repeated) solutions of the
forward problem (1). Therefore, the forward problem (1) is
fundamental to the actual imaging problem and is frequently
quoted as the core EIT-imaging computation. The forward
process, Equations (1) and (3), is illustrated in Figure 1 and
summarised by Equation (2).

B. Standard weak formulation for EIT

In this section the weak formulation for the EIT problem
is derived for a bounded domain Ω ⊂ Π ⊂ R2 in order
to lay the foundation for the fundamental ideas presented
in this paper. Assume that L electrodes are attached on the
Lipschitz boundary surface ∂Ω of Ω. Γ ⊂ ∂Ω denotes the
union of areas under each electrode, assumed to be open
connected subsets

L⋃
l=1

Γl = Γ (5)

and Θ := ∂Ω \ Γ is the union of the remaining areas.
The so-called conductivity equation behind the EIT prob-

lem is a generalised Laplacian of the form

∇ · (σ∇u) = 0. (6)

Boundary conditions on the electrodes Γ are given below as

σ∇u · ν =  on Γ, (7)

u+ zlσ∇u · ν = Ul on Γl, (8)

where Ul, ν, ı, zl the surface potential on the l−th electrode,
the outward unit normal vector, the current density and the
surface (electrode) impedance, respectively.

The boundary condition imposed on the interelectrode
gaps is

σ∇u · ν = 0 on Θ. (9)

Taking inner products of L2 on both sides of the conductivity
equation (6) and applying the vector identities along with the
divergence theorem yields in∫

Ω

σ∇v · ∇w dΩ =

∫
∂Ω

σ∇u · νwdΓ (10)

and by substituting boundary conditions (8) and (9) in
equation (10) one obtains∫

Ω

σ∇u · ∇w dΩ =

L∑
l=1

∫
Γl

1

zl
Ulw dΓl −

L∑
l=1

∫
Γl

1

zl
uw dΓl.

(11)
Integrating (7) over the electrode area Γ results to∫

Γ

σ∇u · ν dΓ =

∫
Γ

 dΓ (12)

or electrode-wise using (8)∫
Γl

1

zl
(Ul − u) dΓl = Υl. (13)

Following [14], the sesquilinear form is defined accord-
ing to Equation (15) and the weak formulation of the
EIT problem is stated as given the driving currents Υ =
(Υ1, . . . ,ΥL)T ∈ RL, with Υl denoting the current applied
to the l-th electrode, find (u, U) ∈ H1

Ω such that

aΩ((u, U), (v, V )) = ΥTV , for all (v, V ) ∈ H1
Ω (14)

subject to uniqueness constraints
∑
l Ul = 0 and

∑
l Υl = 0

[14]. The same authors define the quotient (uniqueness)
solution space as H1

Ω := H1(Ω)⊕ CL/C, where (H1
Ω)′

denotes the dual Sobolev space [14].
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aΩ((v, V ), (w,W )) :=

∫
Ω

σ∇v · ∇w dΩ +

L∑
l=1

∫
Γl

1

zl
(v − Vl)(w −W l) dΓl. (15)

aΠ((v, V ), (w,W )) :=

∫
Π

σ∇v · ∇w dΠ +

L∑
l=1

∫
Γl

1

zl
(v − Vl)(w −W l) dΓl. (16)

inf
(v,V )∈H1

Π

sup
q∈(H1/2(Θ))

′

{
1

2
aΠ((v, V ), (v, V )) − ΥTV + b(v, q)

}
(17)

III. EXTENDING THE ORIGINAL DOMAIN TO A
FICTITIOUS DOMAIN

Central to this contribution is the following, non-typical,
intermediate-step. In particular, we assume that the original
domain is extended to a slightly larger arbitrary one denoted
as Π. This is the so called DEM-paradigm, originally derived
to accommodate the anticipated deformations of the evolving
boundary surface [11], [7]. Taking suitable extensions for all
functions from Ω to the fictitious domain Π, the sesquilinear
form in Π, denoted as aΠ(·, ·), is defined according to
Equation (16).

Unfortunately, (15) and (16) are not equivalent [7], [9].
This is due to the fact that in the interelectrode gaps (Θ),
the current flux (9) in the original domain Ω is implicitly
encapsulated in aΩ (but vanishes). The same condition is not
fulfilled by aΠ. In other words, there is no restriction about
the flux of the potentials in the new fictitious domain Π.
Therefore, the solution space needs to be constrained using
(9).

A. Lagrangian constraints

We opt for the Lagrange multiplier technique to enforce
the essential boundary condition to the fictitious domain Π
by setting the appropriate functional, shown in Equation (17),
where

b(v, q) :=

∫
Θ

qσ∇v · ν ds. (18)

The standard first order optimality conditions then read

aΠ((u, U), (v, V )) + b(v, p) = ΥTV (19)
b(u, q) = 0. (20)

for an excitation pattern ι, defined as ι := [ΥTV , 0]T . For
a discussion on existence and uniqueness of the proposed
scheme as well as the definition of the involved spaces, we
refer to [7].

B. Bypassing the domain discretisation burden

In order to simplify the domain discretisation in the new
fictitious domain Π, one opts for a (numerically) convenient
to discretise shape. In this paper, we opt for a square
domain. The rationale is two-fold. Recasting the forward
EIT problem under the square domain enables us to avoid
expensive (re-) meshing algorithms for domain computations.
In practice, only boundary surface meshing is required as in
the BEM. Recall however, that the obtained stiffness matrices

in BEM are indefinite, densely populated and for the EIT
case non-square ones typically resorting in Least-Square type
of solutions. It is worth underlining that this is not the case
with the present formulation; involved matrices are both
square and sparse.

On the other hand, one may opt for a uniform grid
discretisation on the new square domain similarly to the
Finite Difference Method (FDM). Note that the FDM is
limited to very simple rectangular domains, far from the
ones encountered in EIT. However, for our purposes the
square domain encapsulates the original arbitrary one, whilst
simplifying numerical treatment.

IV. DISCRETISATION

Having derived the DEM formulation to both allow de-
formations as well as to eliminate the need for meshing
the domain, we now proceed with the discretisation of the
continuous problem based on linear B-Splines basis functions
of compact support.

Assuming a finite subspace Sj ⊂ L2 spanned by dilated
translates of the basic spline ϕ, with respect to a uniform
grid spacing h = 2−j , the functions involved in the EIT
formulation are assumed to be linear combinations of B-
spline functions

u(x) =
∑

k

ckϕ
( x

2j
− k
)

(21)

v(x) = ϕ
( x

2j
− k′

)
. (22)

It is worth stressing that having Splines on board suits best
the uniform grid discretisation concept for Π. Additional
advantages in our proposed coupling with B-splines is that
(as in FDM) domain integrals and correspondingly asso-
ciated derivatives have fixed, non-zero entries, which can
be precalculated and serve as a lookup table. This enables
a banded structure for the stiffness matrix as opposed to
scattered matrix entries in typical FEM-based matrices. We
underline that all the above remarks are independent of the
linear B-spline chosen herein and hold valid for B-splines of
higher orders if desired.

In view of the ultimate goal of this configuration, i.e.,
sparsity of the forward solutions, we can push the analysis
a step further since B-Splines admit multiresolution. In fact,
the main contribution of this paper is to combine DEM with
B-Spline wavelets. Using the so-called wavelet transform
and thanks to the carefully engineered formulation, one may
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conveniently switch discretisation from B-Splines to wavelet
basis functions as

TTAσTT
−1u = TT ι (23)

where T is the so called wavelet transform. The wavelets
considered herein are biorthogonal (Riesz) basis functions.
In particular, we employ tensor products of the biorthogonal
Spline-wavelets from [4], adapted to the interval as in [5].

Crucially for the analysis described in this paper, the pro-
posed configuration based on wavelets results to a multilevel
solution T−1u, where wavelet coefficients dk are retrieved
instead instead of spline coefficients ck, see Equation (21).
Given that the wavelet transform is a ‘sparsity transforma-
tion’, the obtain solution, i.e., wavelet coefficients dk, will
maintain a sowewhat sparse structure. Further details con-
cerning the wavelet transform for the EIT case are provided
in [7].

1) Domain Discretisation: For functions defined on the
domain Π, discretisation can be performed in a rather trivial
way thanks to the square (fictitious) domain, allowing for
uniform grid discretisation (of pitch h). In order to demon-
strate the advantages of the suggested concept, we register
to the fictitious domain Π a circular domain Ω of radius
1/4, centered at (1/2,1/2), with 8 electrodes attached holding
fixed contact impedance values set to z = 10 Ohm (see Fig.
2).

2) Boundary Discretisation: The discretisation of the
boundary contour itself is a delicate issue. Following the
dyadic discretisation of the Π domain, we opt for a dyadic
discretisation for ∂Ω by splitting the boundary curve into an
equivalent (dyadic) number of nodes. Note that functions on
the boundary require different discretisation levels due to the
so called LBB condition [8], [9].

V. NUMERICAL RESULTS

In this section, a numerical experiment is set to demon-
strate the ideas developed in this paper. Current is applied
between electrodes 1 & 6 and the multilevel potential distri-
bution (wavelet coefficients dk) in the interior is illustrated in
Fig. 3 where at each decomposition level the original domain
is superimposed to the fictitious one.

The DEM appears to increase the size of the solution space
as the original domain needs to be prolonged to a square.
A careful observation of the distribution of the coefficients
(Fig. 4, top) however reveals that most of the coefficients
are almost zero (Fig. 4, bottom). By discarding coefficients
with absolute values of less than the typical instrumenta-
tion/mesurement noise, say 10−6, it turns out that the ratio
of the non-zero over the total ones is 4.8%. This indicates
that, roughly, only 5% of the total number of coefficients is
essentially required. Indeed, this demonstrates the superior
advantage of the suggested scheme against the conventional
ones. One may discard coefficients in low absolute values
and store the essential ones. In this case, only a few. This
suggests an efficient yet implicit compression scheme and
paves the way for adaptive wavelet schemes.

Fig. 2. The original circular geometry Ω is superimposed to the fictitious
domain Π. 8 electrodes are attached (blue arcs) to the surface of the original
domain.

Fig. 3. The multilevel and sparse structure of the forward solution when
current is applied between electrodes 1 and 6.

Fig. 4. Absolute values of wavelet coefficients. Top: The wavelet coefficient
distribution. Bottom: Zoomed-in version.
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VI. DISCUSSION

It is worth underlying that aside from compression, the
suggested framework is known to result in optimal O(N)
operations by means of an asymptotically optimal precon-
ditioning scheme for EIT [8], where N in the number of
unknowns. Further, mesh discretisation is practically limited
to the circumference of the circle, i.e., line discretisation
instead of domain discretisation. Indeed, taking into account
the sparse structure of the solution, the suggested scheme
can be considered as an ‘implicit model reduction scheme’.

On the other hand, since such properties can be carried
forward to the rest of the analysis for the inverse problem,
Equation (2) or (4), the actual impact of this configuration
to reconstructions can be tremendous. This will allow us to
directly infer distributions in a sparse structure, acknowledg-
ing even further computational and storage savings. Indeed,
a sparse-multilevel forward configuration may additionally
enable hierarchical reconstruction algorithms, i.e., taking full
advantage of the proposed multilevel structure.

VII. CONCLUSIONS

In this paper, the standard weak formulation of EIT
was considered and a continuous-space extension to DEM
was proposed. The theoretical equivalence between original
and fictitious domain was addressed and discretisation was
performed in terms of B-Spline Wavelets. The proposed
scheme resulted in sparse forward solutions where only a few
coefficients are zero. The suggested multilevel configuration
is not limited to the forward problem. Indeed, it carries
forward to the inverse problem in order to enable inherently
sparse reconstructions. Finally, it is worth highlighting that
the suggested formulation can be trivially extended to 3D by
means of tensor products of the associated basis functions.
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