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Abstract— Here we report first results of numerical methods
for modeling the dynamic structure and evolution of epileptic
seizure activity in an intracranial subdural electrode recording
from a patient with partial refractory epilepsy. A 16-min
dataset containing two seizures was decomposed using up to five
competing adaptive mixture independent component analysis
(AMICA) models. Multiple models modeled early or late ictal,
or pre- or post-ictal periods in the data, respectively. To localize
sources, a realistic Boundary Element Method (BEM) head
model was constructed for the patient with custom open skull
and plastic (non-conductive) electrode holder features. Source
localization was performed using Sparse Bayesian Learning
(SBL) on a dictionary of overlapping multi-scale cortical
patches constructed from 80,130 dipoles in gray matter perpen-
dicular to the cortical surface. Remaining mutual information
among seizure-model AMICA components was dominated by
two dependent component subspaces with largely contiguous
source domains localized to superior frontal gyrus and precen-
tral gyrus; these accounted for most of the ictal activity. Similar
though much weaker dependent subspaces were also revealed in
pre-ictal data by the associated AMICA model. Electrocortical
source imaging appears promising both for clinical epilepsy
research and for basic cognitive neuroscience research using
volunteer patients who must undergo invasive monitoring for
medical purposes.

I. INTRODUCTION

Epilepsy is one of the most common neurological disor-

ders, affecting 50 million people worldwide, and in approxi-

mately 30% of these patients the seizures are not controlled

by any available medical therapy. About 4.5% of all pa-

tients with epilepsy are thus potential candidates for surgical

treatment. Epilepsy surgery has a good chance of success in

this patient group, but only if the brain region initiating the

ictal activity can be accurately localized and safely removed.

For this purpose, in selected cases, recordings are acquired

from implanted subdural and/or depth electrode (intracranial)

during pre-surgical evaluation. Here, we model and image

the source dynamics of electrocorticographic (ECoG, iEEG)

data before, during and after occurrence of epileptic seizures

in 16 min of data from a patient with an implanted ECoG

electrode grid and a strip. The accuracy of source localization

is heavily influenced by the electrical head model used. The

influences on current flow of post-surgical defects in the

skull and the plastic sheets in which the subdural electrodes

are embedded cannot be neglected [1]. Here, we used the
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Boundary Element Method (BEM) to solve the forward prob-

lem using the neuroelectromagnetic forward head modeling

toolbox (NFT) [2]. A custom head model included the non-

conducting plastic sheets in which the subdural electrodes

were attached and the large opening left in the skull during

implantation to reduce patient discomfort from associated

brain tissue swelling [1].

Another factor that affects source localization of ictal

activity is the degree of isolation of ictal activity from the

spontaneous electroencephalography (EEG) background. In

earlier studies we have shown infomax independent compo-

nent analysis (ICA) developed by Makeig et al [3] can suc-

cessfully separate seizure and non-seizure source activities

[1]. Here we used a recently developed extension, adaptive

multiple-mixture ICA (AMICA) to model the nonstationarity

in the data [4] we have found to return components whose

time courses are more independent than infomax or other

ICA methods tested (Delorme et al., submitted).

Source modeling and choice of the inverse method also

affect cortical source localization. Parametric ‘equivalent cur-

rent dipole’ methods assume that potential maps of interest

can be approximated by a few dipolar sources. ‘Distributed

source’ methods assume that potentials are generated by

a large number of dipolar sources distributed across the

cortical surface [5]. Other source models that may be more

physiologically accurate model an EEG source as a cortical

patch with a fixed relative source intensity profile of activity

synchronously produced across the patch [6]. Plummer et

al (2010) compared the effect of various forward models,

distributed inverse source localization algorithms, and sub-

space constraints [7]. They used data from four patients with

benign focal epilepsy of childhood plus four mesial temporal

lobe epilepsy patients. Three realistic head models derived

from the Montreal Neurological Institute (MNI) template

brain were used for forward solutions. These researchers

reported that the sLORETA algorithm, constrained to find

cortical patches or cortical rotating dipoles, generated the

most robust and clinically meaningful results. A recent study

by Wipf et al. compared Sparse Bayesian Learning (SBL)

methods with other distributed localization methods includ-

ing sLORETA, beamforming, and minimum current estima-

tion, reporting that SBL methods were the most successful in

estimating distributed sources [8]. In a previous report, we

showed that using a multi-scale patch-based source space,

SBL was able to find both sulcal and gyral sources of

standard ECoG grid data [9]. The following section describes

the head modeling, AMICA, component clustering based on

mutual information, and inverse solution steps.
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II. METHODS

A. Forward problem solution and head modeling of the

epilepsy patient

When a patient is hospitalized for epilepsy surgery, scalp

EEG is monitored and a magnetic resonance (MR) head

image is acquired. Before epilepsy surgery, a pre-surgical

procedure is applied in which a portion of their skull is

removed and areas around the suspected epileptogenic zone

are recorded and sometimes stimulated to determine whether

the seizure generating region is localized and suitable for

operation, e.g. not within or too close to eloquent cortex.

Computer tomography (CT) images of the head are then

acquired to locate the intracranial electrodes.

To generate an electrical forward head model, first the

MR and CT images of the patient were co-registered. The

skull, intracranial electrodes, and the plastic sheet in which

the subdural electrodes were embedded were segmented from

the CT images. The brain and the scalp were segmented from

the MR images using an open source Matlab toolbox, NFT

(Neuroelectromagnetic Forward Head Modeling Toolbox)

[2]. Figure 1 shows the BEM meshes for the skull, plastic

sheet, and the scalp. Here, the cerebrospinal fluid (CSF) was

not modeled for simplicity. When using scalp EEG, earlier

studies have shown that the source localization results can

change 4-30 mm. With ECoG data, we expect the difference

to be much lower. This will be investigated in a future

study. The resulting model was used in forward- and inverse-

problem (FP/IP) calculations to localize independent sources

of iEEG data from their respective projection patterns to the

grid channels returned by AMICA.

Fig. 1. BEM model of the scalp, skull and the plastic sheet, represented by
10,000, 30,000, and 7,000 faces, respectively. The right figure is the plastic
sheet model of the plastic grid and strip electrode matrices.

B. Adaptive mixture independent component analysis (AM-

ICA)

Infomax Independent Component Analysis (ICA) has

proven to be an effective method for removing eye and

muscle activity artifacts from scalp EEG data, thus increasing

the potential signal-to-noise ratio of subsequent analyses [3].

ICA can also identify and separate functionally independent

components, which for normal scalp EEG prove to be most

often associated with scalp maps matching the projection

of a single equivalent current dipole. ICA decomposition

returns a vector of weights giving the relative strength and

polarity of the projection of each IC source process to each

of the electrodes, and an activation time series giving the

time course of activity of each IC process during the data

time period. We have previously shown source localization

results using Infomax ICA [9]. Here, we used a recently

developed adaptive mixture ICA (AMICA) method in which

a number of models compete with each other to fit the

data. This allows us to model non-stationarity in the data

source structure by allowing different models to account for

different time periods. The data are segmented by AMICA

in an unsupervised manner using a variational expectation

maximization algorithm combined with a Newton method

for updating the model bases. The AMICA model:

x(t) = Amsm(t), m = 1, . . . , n (1)

where x(t) is the data, Am is the mixing matrix for the mtℎ

model, and sm(t) is the activation for the mtℎ model. n is the

total number of models. We applied AMICA to 16 minutes

of 78-channel iEEG data (Figure 2) from subdural electrodes

recorded from an epilepsy patient and including two brief

ictal (seizure) periods (Figure 3). We compared AMICA

decompositions using 1-5 models. Multiple models allowed

individual adaptation to differences in spatiotemporal source

structures during seizure and nonseizure periods. The tempo-

ral segmentation returned by AMICA was consistent across

varying model numbers. Additional models adapted to some

time-local features expressed in the data. A model must have

a minimum amount of data to yield statistically reliable

components. If too many models are used, the amount of

data determining each model will decrease resulting in poor

results for all the models. In the 5-model decomposition, the

two seizures were segmented consistently into early and late

phases. The logarithm of the posterior likelihood is plotted

over all time points in Figure 4 for the 1-model and 5-model

decompositions. In the 1-model decomposition, overall data

likelihood (given the model) drops severely during seizure

periods, while in the 5-model decomposition the seizure

periods are better accounted by other models that represent

pre-seizure, early seizure, late seizure, early post-seizure, and

later post-seizure data, respectively.

Fig. 2. CT image of the implanted grid electrodes (left) and the BEM
model of the brain surface with co-registered electrodes (right). The two
grids (6 × 8, 4 × 6) and one medial strip (1 × 8) implanted in the patient
for monitoring.

Fig. 3. The iEEG data. All channels are plotted on the same axis. The
seizure periods are highligtened.
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Fig. 4. Likelihood graphs for 1-model and 5-model Amica decomposition.

C. Sparse patch-based inverse problem solution

Next, we generated a realistic cortical source space in-

corporating 80,130 dipole elements oriented perpendicular

to the local cortical surface, located from the subject MR

head images using tessellated FreeSurfer (FS) gray and white

matter surfaces (surfer.nmr.mgh.harvard.edu). Both NFT and

FS models are generated from the same MR data, which

was resliced to 1mm. To co-register the source space with

the BEM model we translated the FS model. Although we

used all the surface nodes of the FS mesh for this study,

we may also take a subset of the vertices that are under

or in the vicinity of the subdural electrodes. That would

reduce the dimension of the problem. The lead field matrix

(LFM) for this source space was calculated using the BEM

tools in the NFT toolbox. To create a multi-scale cortical

patch basis on this brain mesh surface, we selected for

each single voxel dipoles, three conformal, gaussian-tapered

cortical patches of three sizes with geodesic radii of 10

mm, 6 mm, and 3 mm [10]. Figure 5 shows the three

gaussian patches centered on a single cortical voxel. We

Fig. 5. Three Gaussian patches of different size centered on a cortical
mesh voxel with radius 10 mm, 6 mm, and 3 mm.

solved the EEG inverse problem for each AMICA component

by identifying a sparse collection of cortical patches that best

accounted for its grid map using sparse Bayesian learning

(SBL) [11]. Figure 6 shows projection maps for six IC

processes to the model subdural electrode sheet and strips,

and their associated source localization estimates. These

components were selected from the early-seizure model of 5-

model AMICA decomposition; all participate in the seizure.

Component (d) is the seizure onset component as well as

the component accounting for inter-ictal spikes observed in

the data by our clinical collaborators. Most of the seizure-

related component locations are compact gyral patches, but

there are also sulcal components as shown in Figure 6 (e).

This IC process projects to two separate broad pools of

electrodes with opposite polarities and has a compact source

area estimate located in a sulcus. The spatial extent of the

source regions (a), (b), and (c) look similar, but the degree

of focality of the source projections to the recording grid

differs according to the estimate source location.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Projection maps (interpolated on the electrode grid and strip
surfaces) and patch-basis SBL localization of the cortical source domain,
shown on the whole cortical surface and in close-up.

D. Component pairwise mutual information and dependency

clustering

We calculated the pairwise mutual information (PMI)

between the component processes to better understand how

the component time courses differ. The PMI calculation is

based on estimating the entropies of the signal using the

usual binning method in which channel value histograms

and a simple Riemann integral approximation are used to

compute the entropies. This approach is generally suitable

for larger sample sizes like those encountered for EEG

data. We then clustered the components using a heuristic

method of searching for permutations in component order

that produce approximately more block diagonal PMI matrix.

Figure 7 shows the sorted PMI of components in the 5-

model decomposition (a) for the pre-seizure model, and

(b) for the first part of the seizure. We then imaged the

activations and source estimates of the revealed component

subspaces. Figures 8 and 9 show the activations of the

subspace components during 5 seconds of pre-ictal or ictal

period data and their summed source location estimates.

The activations of the components in each AMICA cluster

had similar time patterns, and the components were localized

by SBL to nearby or partly overlapping cortical patches.

There were two main active regions during seizure as shown

in the first and last rows of Figure 9. The first active region

was on the superior frontal gyrus and the second in the

precentral gyrus. We computed PMI on those data points

best accounted by each model. Thus, the pre-seizure PMI
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clusters were trained predominantly on pre-seizure data only.

We observed that the source location of the (much weaker)

strongest PMI residual-dependency cluster for this model is

the seizure activity locations including the inter-ictal source

location. The location is quite similar to the sum of the

activity locations of the seizure clusters during seizure. We

also observed very similar source locations as in 9 (a) and

(d) of the PMI clusters for the model long after the seizures.

(a) (b)

Fig. 7. Pairwise mutual information between maximally independent
components of two models in the 5-model decomposition. (a) Pre-seizure
model, (b) first part of the seizure. Component subspaces exhibiting partial
residual dependency are highlighted.

Fig. 8. Activations and sources of the components in the dependency
clusters shown in Figure 7(a) (pre-seizure period). The seventh component
shows an inter-ictal discharge. (Source localization is given in Figure 6 (d).)

To test the stability of this observation, we decomposed an

additional 16 minutes of non-seizure data using single-model

AMICA and again calculated the component PMI. We found

6 weak dependency clusters; two of them had grid maps and

source distributions again similar to the two principal early-

seizure model clusters for the seizure data, suggesting that

the seizures exploit background susceptibilities to dependent

interaction of these areas.

III. CONCLUSIONS AND FUTURE WORK

Here, we analyzed intracranial EEG recordings using

multi-model AMICA and numerical forward and inverse

source estimation methods and presented patch-based source

localization results for seizure data recorded from an epilepsy

patient during invasive pre-surgical monitoring. We calcu-

lated PMI between components and clustered components

exhibiting dynamic interdependency. We found two predom-

inant dependent clusters that accounted for much of the ictal

activity and were localized to contiguous cortical areas. In

a companion paper [12], the dynamic interactions of these

two regions are further modeled using multivariate causality

and information flow methods. It seems possible that elec-

trocortical source imaging may allow valuable insights into

the electrophysiological dynamics of the human brain (both

normal and abnormal).

Fig. 9. Activations and sources of the components in the dependency
clusters shown in Figure 7(b) (seizure period)
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