33rd Annual International Conference of the IEEE EMBS
Boston, Massachusetts USA, August 30 - September 3, 2011

Wavelet-Based Ultrasound Image Denoising: Performance Analysis
and Comparison
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Abstract— Ultrasound images are generally affected by
multiplicative speckle noise, which is mainly due to the
coherent nature of the scattering phenomenon. Speckle noise
filtering is thus a critical pre-processing step in medical
ultrasound imaging provided that the diagnostic features of
interest are not lost. A comparative study of the performance of
alternative wavelet based ultrasound image denoising methods
is presented in this article. In particular, the contourlet and
curvelet techniques with dual tree complex and real and double
density wavelet transform denoising methods were applied to
real ultrasound images and results were quantitatively
compared. The results show that curvelet-based method
performs superior as compared to other methods and can
effectively reduce most of the speckle noise content of a given
image.

I. INTRODUCTION

PECKLE phenomena affect all coherent imaging

systems including systems using laser, SAR and medical
ultrasound imaging techniques. Therefore it is important to
reduce the speckle effect in the medical images often used
for diagnostic applications.

Several methods have been proposed in the past for
speckle removing from ultrasound images. The classical
Wiener filter is shown not to be adequate for this purpose
since it is basically designed for additive noise suppression
[1]. Because of the multiplicative nature of speckle noise,
Jain [2] developed a homomorphic filter where the
multiplicative noise is converted into additive noise using
the logarithm of the image. Wiener filter could then
partially remove the resulting additive noise. Others have
used adaptive weighted median filtering approach,
introduced in [3] which can effectively suppress the speckle
noise but it fails to preserve many useful details since it is
merely a low-pass filter.

Traditional spatial and filtering-based methods for
denoising often reduce noise at the cost of blurred features
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while single-scale conventional methods for contrast
enhancement may amplify noise [4]. Recently, there has
been a considerable interest in using wavelet transform as a
powerful tool for recovering signals from noisy data.
Regularized soft thresholding (wavelet shrinkage) is adopted
to reduce noise energy within finer scales using nonlinear
processing of feature energy for contrast enhancement [5].

Non-linear estimators have also been developed based on
formal Bayesian theory, that outperform the classical linear
processors and simple thresholding estimators in removing
noise from regular scene images. A generalized Laplacian
model for the subband statistics of the signal has also been
developed and has been used for noise-removal [6].

In this article a comparative analysis of the performances
of various wavelet based methods for ultrasound image
denoising is presented. We will consider dual tree wavelet
transform in its three different structures namely complex,
real, double density as well as contourlet and curvelet
transform. The paper is organized as follows. Section II
describes the methods used in the comparative study.
Section III introduces the image data set employed in this
work. The results are illustrated in section IV. Finally,
section V concludes the paper.

II. METHODS

The speckle noise in an ultrasound image is generated by
the fact that there are a number of elementary scatterers
within each resolution cell of the image that reflect the
incident wave back towards the ultrasound sensor. The
backscattered coherent waves with different phases undergo
constructive and destructive interferences in a random
manner. The resulting image is thus corrupted by a random
granular pattern, called speckle noise which hinders the
interpretation of the image content [6].

Various methods have been proposed in the past to reduce
the effect of the speckle noise within ultrasound images [7].
Wavelet transform based methods for noise reduction for
application in different categories of images have gained
considerable attention during past decade. This is mostly due
to effective noise reduction capability of these methods
while preserving the main image/signal characteristics
regardless of the image frequency content [7].

A tradeoff between noise reduction and the preservation
of the actual image features has to be made in order to
enhance the relevant image content for diagnostic purposes.
Even though wavelets have been extensively used for
denoising speckle noise of ultrasound images, it has been
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shown [6] that speckle denoising using contourlets, provides
superior results as compared with those of the wavelet
shrinkage and dual tree wavelet transform methods in terms
of the signal to noise ratio. In the following characteristics of
these different techniques and their application for speckle
denoising will be addressed.

Due to the multiplicative nature of the speckle noise as
with most of the previously reported research works [8] the
logarithm of the input image is calculated first.

A. Dual tree Wavelet Transform

To overcome oscillations of the wavelet coefficients at the
points of singularity and lack of directional selectivity in
higher dimensions as well as aliasing and consequent shift
variance problems, complex wavelet transform (CWT)
employs analytic filters having real and imaginary parts that
are constructed from Hilbert transform (HT) pair and thus
securing magnitude-phase  representation and  shift
invariance with no aliasing. Complex wavelet transform as a
moderately redundant multi-resolution transform with
decimated subbands runs in two DWT trees (real and
imaginary) of real filters that produce real and imaginary
parts of the coefficients.

B. Dual tree Complex wavelet transform

Complex wavelets have not been widely used in image
processing due to the difficulty in designing complex filters
which satisfy a perfect reconstruction property. An effective
approach for implementing analytic wavelet transform was
first introduced by Kingsbury in 1998 which is called the
dual-tree CWT (Complex Wavelet Transform) [4]. This
technique uses two trees of real filters to generate real and
imaginary parts of the wavelet coefficients separately.

The dual tree CWT employs two real DWTs; the first
DWT yields the real part of the transform while the second
DWT gives the imaginary part. The two real wavelet
transforms use two different sets of filters, with each
satisfying the perfect reconstruction (PR) conditions. The
two sets of filters are jointly designed so that the overall
transform is approximately analytic. The filters are
themselves real; no complex arithmetic is required for the
implementation of the dual-tree CWT. We also note that the
dual-tree CWT is not a critically sampled transform,; it is two
times expansive in 1-D because the total output data rate is
exactly twice the input data rate. This introduces redundancy
in transform which is considered a point of merit for dual
tree CWT in noise reduction applications. The inverse of the
dual-tree CWT is as simple as the forward transform. To
invert the transform, the real part and the imaginary part are
each inverted—the inverse of each of the two real DWTs are
used to obtain two real signals. These two real signals are
then averaged to obtain the final output. Note that the
original signal x(n) can be recovered from either of the real
part or the imaginary part alone; For denoising applications,
instead of shrinking each wavelet coefficient directly, one
can shrink the magnitude of the complex wavelet to improve

the de-noising performance.

C. Contourlet

The contourlet transform is a 2-D transform technique
recently developed for image representation and analysis [9].
It was originally defined in the discrete domain, but in [9]
authors proved its convergence in the continuous domain. It
was constructed in a discrete-domain for multi resolution
and multi direction expansion using non-separable filter
banks. This construction resulted in a flexible
multiresolution, local, and directional image expansion using
contour segments, and thus it is named contourlet transform.
The discrete contourlet transform has a fast iterated filter
bank implementation algorithm that requires an N order
operation for N pixel images.

The improvement in approximation by contourlets based
on keeping the most significant coefficients, will directly
lead to improvement in numerous applications including
compression, denoising and feature extraction. In image
denoising, random noise will generate significant wavelet
coefficients similar to true edges, but is less likely to
generate significant contourlet coefficients. Consequently,
thresholding for denoising in contourlet is more efficient
than thresholding in wavelet transform.

D. Ridgelet

We describe ridglet in this part since it is utilized as a first
stage of curvelet transform in each of the scales in transform
domain. Ridgelets have found several applications in image
processing. They can be adapted to represent objects with
curved edges using an appropriate multiscale localization
where at a sufficiently fine scale; curved edges can be
approximated by a straight line. A standard ridgelet
transform can be applied to a given image where 2D FFT of
the image is computed first followed by replacing the
sampled values of Fourier transform that are derived on the
square lattice, by the corresponding sampled values on a
polar lattice. The 1D inverse FFT on each angular line is
then computed where this is followed by application of 1D
scale wavelet transform on the resulting angular lines in
order to obtain the ridgelet coefficients [10].

E. Curvelet

Curvelets proposed by E. Candes and D. Donoho [11, 12],
constitute a relatively new family of frames that are designed
to represent edges and other singularities along curves much
more efficiently than the traditional wavelet based
transforms. The idea of curvelets is to represent a curve as a
superposition of functions of various lengths and widths
obeying the scaling law width ~ length2. This can be done
by first decomposing the image into suitable subbands, i.e.
separating the object into a series of disjoint scales. Then,
each scale is analyzed by means of a local ridgelet
transform. Curvelets are used in object detection in speckle
images [13].
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III. MATERIALS

A. Images

We use two sets of images gathered from ultrasound
image gallery [14] and Philips [15] datasets. Since the size
of speckle noise in these data is not known, in order to
compare the results of denoising by different methods, we
use these data as reference data assuming they are clean and
without speckle noise.

B. Noisy Images

In order to generate speckle noisy image, we apply the
multiplicative speckle noise on the ultrasound image
according to (1) in which Sis the noise-free ultrasound
image and n is uniformly distributed random noise with
mean 0 and variance v.

I=8xn €))
The input image to the denoising methods is the logarithm
of the noisy image in which the speckle is transformed from
multiplicative noise into an additive noise according to (2):

logI(m,n) = logS(m,n) + logn (m,n) ()

IV. RESULTS

For application of dual tree denoising method, it is
necessary that an optimum threshold level be obtained. This
is achieved by calculating the mean squared error (MSE)
evaluated from the noisy and de-noised images for different
threshold values and selecting a threshold which yields
minimum MSE. Several optimum threshold values under
different transform methods are shown in table 1.

TABLE I
OPTIMUM THRESHOLD FOR DUAL TREE DENOISING
Optimum Method
Threshold
0.02 Dual tree Double Density WT
0.015 Dual tree Complex WT
0.015 Dual tree Real WT

We have used peak signal to noise ratio (PSNR) and the
mean square of the differences between noisy and clean
images (RMS) to compare the different denoisng results.
The PSNR and RMS measures are used in approximately all
the papers which are about the denoising of the ultrasound
images. They are defined as follow:

MSE L NN 2 ®)
= —> 3G - KG )]
i=1 j=1
And
PSNR = 101 MAX; @
= 10log (55

Here, MAX is the maximum possible pixel value of the
noisy image (I(i,j)) and K(i,j) is the denoised image. As it is
shown in table II the complex dual tree wavelet transform
yields better denoising results as compared with real dual

tree wavelet transform and double density dual tree wavelet
transform. The complex dual tree result has greater PSNR
and lower RMS values. The denoising methods are applied
on noisy images with the same amount of speckle noise, so
the results are comparable.

The original noise-free image and its noisy version and
the denoised image by dual tree complex method are shown
in Fig. 1.
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(a) Original image (b) Noisy image (c) Denoised image
Fig. 1. Dual tree complex wavelet transform denoising result v = 0.03

The details of the ultrasound image in Fig. 1 along with
the white written note can be used for visual assessment of
the denoising approach. The denoised images of contourlet
and curvelet denoising methods are shown in Fig. 2 and Fig.
3.
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Fig. 2. Contourlet denoising resultv = 0.03

As it can be seen, the speckle noise is not fully removed
using contourlet based denoising and the speckle on the
black part of the background image remains to be denoised.
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Fig. 3. Curvelet denoising result v = 0.03

(b) Noisy 1m-age (c) Denoised image

(a) Original image
Fig. 4. Curvelet denoising result v = 0.03

Fig. 3 and Fig. 4 show the denoising results of curvelet
method on two different images from two different dataset.
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The blurring effect of other despeckling method is rarely
seen in the results of curvelet method.

TABLE II
DENOISING RESLUTS
ethod Noisy Dual Dual Dual Curvelet | Contourlet
Image Tree Tree Tree
Result Real Complex | Double
Density
PSNR | 27.451 | 30.5628 31.101 30.013 32.426 29.483
RMS 0.029 0.021 0.019 0.022 0.018 0.026

In table II the PSNR and RMS values of different
denoisng methods are shown for comparison of the results.
The curvelet method for noise variance v = 0.03 yields
better result than the other method. It is shown that the result
of dual tree complex wavelet is very close to those of
curvelet but still a lower PSNR value.
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Fig. 5. Comparing the denoising results of different methods

Fig.5 shows the results of denosing under different
methods considered in this paper as a function of noise
variance. It can be concluded that  different optimum
denosing method are to be applied for different range of
variances, however curvelet yields superior results as
compared with other methods. The PSNR of the curvelet
denoising results is significantly higher than those of other
methods.

When the noise variance is around v = 0.06, the dual tree
complex method results are near curvelet results and a bit
better. All in all curvelet denoising method is appropriate for
all levels of speckle noise.

Besides the MSE and PSNR measures, visual quality of
the denoised image is usually used for evaluating the
denoising results. Among all these methods, curvelet
performs well in terms of both PSNR and visual quality.

Visual quality was assesses by a physician
and showed improved results. This expert confirmed the
better visualization of the details in denoised images in
comparison with noisy images.

V. CONCLUSION

Dual tree wavelet transform for the reason of the

redundancy of the transform, it yields enhanced denoising
results as compared with standard wavelet shrinkage
denoising methods. Among dual tree methods, complex dual
tree wavelet exhibit a superior performance for denoising
that is attributed to the redundancy of the transform as well
as large number of the coefficients that is generated in
transform domain.

Curvelet denoising method is more efficient in denoising
speckled ultrasound images due to the ability of curvelet to
recover signals in different directions as compared with
other methods including dual tree complex wavelet
transform. The method yields better results as compared
with contourlet which is attributed to the frame structure
used for representing edges and singularities along curves.
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