
  

  

Abstract—A growing number of prosthetic devices have been 

shown to provide visual perception to the profoundly blind 

through electrical neural stimulation. These first-generation 

devices offer promising outcomes to those affected by 

degenerative disorders such as retinitis pigmentosa. Although 

prosthetic approaches vary in their placement of the 

stimulating array (visual cortex, optic-nerve, epi-retinal 

surface, sub-retinal surface, supra-choroidal space, etc.), most 

of the solutions incorporate an externally-worn device to 

acquire and process video to provide the implant with 

instructions on how to deliver electrical stimulation to the 

patient, in order to elicit phosphenized vision. With the 

significant increase in availability and performance of low 

power-consumption smart phone and personal device 

processors, the authors investigated the use of a commercially 

available ARM (Advanced RISC Machine) device as an 

externally-worn processing unit for a prosthetic neural 

stimulator for the retina. A 400 MHz Samsung S3C2440A 

ARM920T single-board computer was programmed to extract 

98 values from a 1.3 Megapixel OV9650 CMOS camera using 

impulse, regional averaging and Gaussian sampling algorithms. 

Power consumption and speed of video processing were 

compared to results obtained to similar reported devices. The 

results show that by using code optimization, the system is 

capable of driving a 98 channel implantable device for the 

restoration of visual percepts to the blind. 

I. INTRODUCTION 

isual percepts have been elicited in vision impaired 

patients though the electrical stimulation of the  visual 

cortex [1, 2], the optic nerve [3] and the eye [4, 5]. Although 

on-implant image processing has been shown to be possible 

[6], various groups [7, 8] have opted to use some form of 

image acquisition device and associated computation 

circuitry in order to process the visual scene. Importantly, 

this approach provides researchers with the opportunity to 

improve and upgrade the capabilities of the implant system 

without the need for revision surgery to modify implanted 

components.  

External processing of the visual scene ultimately leads to 

a set of stimulation instructions that are sent to the implanted 

hardware, typically by the way of an inductively-coupled 

transcutaneous link. Reports on present generation visual 

neuroprostheses, irrespective of their electrode quantities, 

elicit phosphene percepts in small numbers and at spatial 

separations consistent with very rudimentary vision.  

In the case of the device being developed by the authors, 

images can be acquired from a camera or manually uploaded 
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to the portable processing device; the images are sampled 

and transmitted through an inductive radio frequency (RF) 

link to a device with 98 electrodes surgically implanted 

within the suprachoroidal space of the eye (Fig. 1). 

The aim was to determine whether a low-cost, 

commercially-available, portable device could prove to be 

sufficiently powerful to perform the image processing tasks 

required to drive a 98 electrode visual prosthesis with 

meaningful data that results in useful visual information. 

Important considerations for the system also include being 

sufficiently lightweight to be worn by a patient for extended 

periods of time and with a current draw which allows for it 

to be powered by a compact battery for several hours. 

A key, limiting factor in previously reported devices [8, 9] 

is the relatively slow data transfer rate between the system’s 

processor and the camera. In order to provide a fluid image 

to the prosthetic device, the system should provide a 

sufficiently fast connection to refresh the visual scene at a 

rate of at least 20 Hz so as to reduce the propensity of the 

visual scene to appear as “flickering” to the patient. 

In this paper the authors present an ARM-based 

processing device capable of performing real time image 

processing and transmitting resulting stimulations 

parameters via a serial connection. Particular emphasis was 

given to the optimization of the software in order to achieve 

real time processing. A Technical Interface (TI) software 

was written to simulate the tools a physician may require to 

test and configure the device once implanted in a patient. 

II. METHODOLOGY 

A. Hardware 

A Mini2440 single-board computer was used 

(FriendlyARM Computer Technology, Guangzhou, 

China)(Fig. 2); it incorporates a 400 MHz Samsung 

S3C2440 ARM9 processor with 64MB RAM and 1GB of 

solid state storage. The Mini2440 was chosen due to its 

processor speed, compact size (100 * 100mm), light weight 

(176g), low cost, open-source framework and the presence 

of a dedicated CMOS camera port on the chip that allowed 

the acquisition of images from the camera at a much higher 

frame rate than that of typical USB interfaces. An OV9650 

1.3 Megapixels CMOS camera (Omnivision, California, 

USA) was used; this was chosen for its hardware 

compatibility, driver availability and the possibility of 

streaming video at 60 fps at 320 * 240 pixel resolution. Due 

to Linux driver limitations, the camera was run at 50fps. In 

order to test battery life a 6 Ah three-cell lithium polymer 
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TABLE I 

MEAN AND VARIANCE OF POWER CONSUMPTION FOR DIFFERENT SAMPLING 

TECHNIQUES AVERAGED OVER 5 RUNS OF 60S 

Sampling Type 
CPU 

Activity (%) 

Current Draw 

with screen (mA) 

Current Draw 

no screen (mA) 

Idle 0 ± 1% 576 ± 2 246 ± 1 

IS 51.4 ± 0.6% 714 ± 2 392 ± 2 

RA (r = 15px) 68.8 ± 0.5% 736 ± 1 409 ± 3 

GS (r = 15px) 86.4 ± 0.2% 746 ± 1 416 ± 1 

GS (r = 18px) 94.0 ± 0.2% 762 ± 2 432 ± 1 

the sampling algorithm require an increase in computing 

speed and power consumption (Table 1). 

In subsequent tests, 18 pixel GS was used. This value was 

chosen because it maximized the sampling radius without 

causing the drop in frame-rate. In the Gaussian equation, 

given a value of σ of 6 (¼ of the sampling point distance of 

26 pixels), a radius of 18 allowed sampling of values with 

weights as low as 4.9e-5. Moreover, the sampling radii 

overlap, resulting in a sampling area which covers 75.5% of 

the total image acquired by the camera, hence effectively 

compressing a large amount of visual information. 

C. Power Consumption 

The true RMS AC+DC current draw of the device was 

monitored using a Tenma 72-7730 multi-meter (Tenma Test 

Equipment, Springboro, USA) whilst idle and running 

various sampling algorithms. The main sources of power 

consumption were determined to be the screen matrix and 

backlight, and the CPU activity (table I). The device was 

then connected to the lithium ion battery and the battery life 

tested. The linear regulator maintained 5V output until the 

battery voltage dropped below 2.7V, resulting in a battery 

life of 5 hours. The screen was disconnected and the tests 

repeated, resulting in a significant increase in battery life 

(6.8h ± 0.2h). It should be noticed that the RF link used in 

these tests is not used to power an implant, and therefore 

draws significantly less current than the final device. 

IV. DISCUSSION AND CONCLUSION 

In this paper the authors tested the possibility of using a 

low-cost, commercially available ARM-based single-board 

computer for video acquisition and processing for a vision 

prosthesis device. By utilizing platform specific algorithms, 

a modified camera driver and optimizing the hardware for 

power conservation, it was possible to develop a flexible, 

lightweight, portable device capable of sampling video from 

a camera in real time, which could be tailored to the 

individual threshold requirements of a patient.  

In the last few years various techniques have been 

proposed to perform image processing and extrapolate 

salient information from a video stream for visual 

neuroprostheses [9, 12, 13], however, when it comes to 

hardware, it is often difficult to compare devices due to the 

time passing between reports and the nature of the device 

being developed. Fink et al. [9] proposed a much lighter (8 

g) device which ran at a higher clock speed (600 MHz), 

however the compact nature of the hardware used excluded 

the presence of a dedicated camera port, resulting in a 

reduction in resolution to 160 * 120 pixels in order to 

achieve a satisfactory frame-rate. Moreover, the powerful 

CPU was mostly under-utilized, yielding a load of just 10%. 

FPGAs also provide a viable hardware solution: 

Srivastava et al. [14]  presented a high resolution, high 

phosphene-count FPGA to drive a visual implant, however 

implementing such a processing device on FPGA introduces 

rigid constraints for hardware upgrades; by adopting an 

ARM based device running Linux, the optimized image 

sampling software can be run on any device with compatible 

hardware. It is interesting to note how development of ARM 

processors for the smartphone and low-power markets have 

contributed to the biomedical field: Tsai et al. [8] in 2009, 

reported an image processing device capable of sampling a 

USB camera at a resolution of 176 * 144 at 30 fps, but 

requiring a DSP to perform the image processing. 

With such rapid increases in performance, future devices 

will allow higher resolution image acquisition and the 

implementation more mathematically demanding algorithms. 
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